1. Network representation of multicellular activity in pancreatic islets : Technical considerations for functional connectivity analysisMarko Šterk, Yaowen Zhang, Viljem Pohorec, Eva Paradiž, Jurij Dolenšek, Richard K. P. Benninger, Andraž Stožer, Vira Kravets, Marko Gosak, 2024, original scientific article Abstract: Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics. Keywords: islets of Langerhans, beta cells, calcium signaling, intercellular communication, functional networks, myosin model Published in DKUM: 09.12.2024; Views: 0; Downloads: 4
Full text (4,48 MB) This document has many files! More... |
2. NMDA receptor inhibition increases, synchronizes, and stabilizes the collective pancreatic beta cell activity : insights through multilayer network analysisMarko Šterk, Lidija Križančić Bombek, Maša Skelin, Marjan Rupnik, Marko Marhl, Andraž Stožer, Marko Gosak, 2021, original scientific article Abstract: NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional
multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible
role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems. Keywords: pancreas, beta cells, insulin, Islets of Langerhans Published in DKUM: 29.11.2024; Views: 0; Downloads: 2
Full text (4,64 MB) This document has many files! More... |
3. Assessing different temporal scales of calcium dynamics in networks of beta cell populationsJan Zmazek, Maša Skelin, Rene Markovič, Jurij Dolenšek, Marko Marhl, Andraž Stožer, Marko Gosak, 2021, original scientific article Abstract: Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components.How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue
slices with time series analysis and network science approaches to unveil the glucosedependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow
component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms
shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks. Keywords: islets of Langerhans, beta cell network, calcium oscillations, multimodal activity analysis, confocal imaging, functional connectivity, multiplex network Published in DKUM: 06.06.2024; Views: 171; Downloads: 6
Full text (9,40 MB) This document has many files! More... |
4. Functional characteristics of hub and wave-initiator cells in ▫$\beta$▫ cell networksMarko Šterk, Jurij Dolenšek, Maša Skelin, Lidija Križančić Bombek, Eva Paradiž, Jasmina Kerčmar, Matjaž Perc, Marjan Rupnik, Andraž Stožer, Marko Gosak, 2023, original scientific article Keywords: islets of Langerhans, beta cells, insulin Published in DKUM: 12.12.2023; Views: 578; Downloads: 21
Full text (4,00 MB) |
5. Critical and supercritical spatiotemporal calcium dynamics in beta cellsMarko Gosak, Andraž Stožer, Rene Markovič, Jurij Dolenšek, Matjaž Perc, Marjan Rupnik, Marko Marhl, 2017, original scientific article Abstract: A coordinated functioning of beta cells within pancreatic islets is mediated by oscillatory membrane depolarization and subsequent changes in cytoplasmic calcium concentration. While gap junctions allow for intraislet information exchange, beta cells within islets form complex syncytia that are intrinsically nonlinear and highly heterogeneous. To study spatiotemporal calcium dynamics within these syncytia, we make use of computational modeling and confocal high-speed functional multicellular imaging. We show that model predictions are in good agreement with experimental data, especially if a high degree of heterogeneity in the intercellular coupling term is assumed. In particular, during the first few minutes after stimulation, the probability distribution of calcium wave sizes is characterized by a power law, thus indicating critical behavior. After this period, the dynamics changes qualitatively such that the number of global intercellular calcium events increases to the point where the behavior becomes supercritical. To better mimic normal in vivo conditions, we compare the described behavior during supraphysiological non-oscillatory stimulation with the behavior during exposure to a slightly lower and oscillatory glucose challenge. In the case of this protocol, we observe only critical behavior in both experiment and model. Our results indicate that the loss of oscillatory changes, along with the rise in plasma glucose observed in diabetes, could be associated with a switch to supercritical calcium dynamics and loss of beta cell functionality. Keywords: beta cells, islets of Langerhans, self-organized criticality, intercellular dynamics, calcium waves, glucose oscillations, computational model, confocal calcium imaging Published in DKUM: 23.01.2018; Views: 1752; Downloads: 396
Full text (3,43 MB) This document has many files! More... |
6. Functional connectivity in islets of Langerhans from mouse pancreas tissue slicesAndraž Stožer, Marko Gosak, Jurij Dolenšek, Matjaž Perc, Marko Marhl, Marjan Rupnik, Dean Korošak, 2013, original scientific article Abstract: We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreastissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show thatthe dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shedimportant new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far. Keywords: islets of Langerhans, mouse pancreas Published in DKUM: 16.06.2017; Views: 1540; Downloads: 422
Full text (798,57 KB) This document has many files! More... |
7. Glucose-stimulated calcium dynamics in Islets of Langerhans in acute mouse pancreas tissue slicesAndraž Stožer, Jurij Dolenšek, Marjan Rupnik, 2013, original scientific article Abstract: In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types ofcalcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidencethat even a large amplitude calcium signal was not sufficient and thatmetabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future. Keywords: glucose, pancreas, islets of Langerhans, mice Published in DKUM: 10.07.2015; Views: 1451; Downloads: 401
Full text (2,83 MB) This document has many files! More... |