| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 10
First pagePrevious page1Next pageLast page
1.
INVERZNE LIMITE Z ENOLIČNIMI IN VEČLIČNIMI VEZNIMI PRESLIKAVAMI
Matej Merhar, 2009, undergraduate thesis

Abstract: V diplomskem delu bomo najprej predstavili osnovne primere kontinuumov. Nato bomo predstavili inverzne limite inverznih zaporedij kompaktnih metričnih prostorov in enoličnih zveznih veznih funkcij ter dokazali njihove osnovne lastnosti. Definirali bomo tudi inverzne limite inverznih zaporedij kompaktnih metričnih prostorov in navzgor polzveznih večličnih veznih funkcij in si ogledali nekatere njihove lastnosti.
Keywords: Inverzno zaporedje, Inverzna limita, Navzgor polzvezna funkcija, Kontinuum
Published: 11.05.2009; Views: 2425; Downloads: 251
.pdf Full text (885,34 KB)

2.
INVERZNE LIMITE MARKOVSKIH PRESLIKAV
Tjaša Lunder, 2012, undergraduate thesis

Abstract: V diplomskem delu je predstavljeno, katera zaporedja markovskih preslikav tvorijo inverzne limite, ki so med seboj homeomorfne. Tudi m-markovska in markovska preslikava pod določenimi pogoji tvorita homeomorfni inverzni limiti. Podobna teorija se razvije za dve unimodalni preslikavi in za unimodalno ter m-unimodalno preslikavo.
Keywords: Inverzna limita, markovska preslikava, m-markovska preslikava, unimodalna preslikava, m-unimodalna preslikava, vgneteno zaporedje.
Published: 11.06.2012; Views: 1468; Downloads: 90
.pdf Full text (1,10 MB)

3.
Klasifikacija inverznih limit s poševnimi šotorskimi veznimi funkcijami
Matevž Črepnjak, 2013, doctoral dissertation

Abstract: V doktorski disertaciji bomo preučevali homeomorfnost inverznih limit inverznih zaporedij enotskih intervalov [0,1] s poševnimi šotorskimi veznimi funkcijami glede na lego vrhov poševnih šotorskih funkcij. Za poljubna $a,bin [0,1]$ je poševna šotorska funkcija $f_{(a,b)}:0,1]rightarrow [0,1]$ definirana kot večlična funkcija, katere graf $Gamma (f_{(a,b)})$ je unija daljic od $(0,0)$ do $(a,b)$ in od $(a,b)$ do $(1,0)$. Točko $(a,b)$ imenujemo vrh poštevne šotorske funkcije $f_{(a,b)}$. V prvem poglavju bomo predstavili inverzne limite inverznih zaporedij kompaktnih metričnih prostorov tako z enoličnimi kot večličnimi veznimi preslikavami. Predstavili bomo tudi Ingramovo domnevo, ki je glavna motivacija za preučevanje inverznih limit s poševnimi šotorskimi veznimi funkcijami. V drugem poglavju doktorske disertacije bomo govorili o inverznih limitah, ki so homeomorfne Brouwer-Janiszewski-Knasterjevemu kontinuumu. Natančneje, spoznali bomo nekatere primere inverznih limit inverznih zaporedij zaprtih enotskih intervalov $[0,1]$ s poševnimi šotorskimi veznimi preslikavami z vrhom v produktu $[0,1]times[0,1]$, ki so homeomorfne Brouwer-Janiszewski-Knasterjevemu kontinuumu. V tretjem poglavju bomo govorili o klasifikaciji inverznih limit inverznih zaporedij zaprtih enotskih intervalov $[0,1]$ s poševnimi šotorskimi veznimi funkcijami z vrh-om v produktu $[0,1]times[0,1]$. Izpeljali bomo pogoje za homeomorfnost posebnih pri-me-rov inverznih limit s poševnimi šotorskimi funkcijami. Posledično bomo videli, kdaj te inverzne limite niso homeomorfne. Tako bomo v produktu zaprtih intervalov $[0,1]times[0,1]$ predstavili takšne podmnožice, za katere bo veljalo naslednje: če vrhova poševnih šotorskih funkcij pripadata isti podmnožici, tedaj sta pripadajoči inverzni limiti homeomorfni, in če vrhova poševnih šotorskih funkcij pripadata različnim podmnožicam, tedaj pripadajoči inverzni limiti nista homeomorfni. Omenimo, da razdelitev $[0,1]times[0,1]$ na omenjene podmnožice ne bo popolna, saj se je problem klasifikacije takih inverznih izkazal kot zahteven in je postal zanimiv izziv mnogim raziskovalcem na tem področju. V četrtem poglavju bomo opisali še nekaj izvirnih rezultatov o hiperprostoru $2^{prod[0,1]}$, opremljenim s Hausdorffovo metriko. Osredotočili se bomo na poti in loke, ki potekajo natanko skozi inverzne limite inverznih zaporedij enotskih zaprtih intervalov $[0,1]$ s poševnimi šotorskimi veznimi funkcijami z vrhom v produktu zaprtih enotskih intervalov $[0,1]times[0,1]$. V zadnjem poglavju se bomo posvetili še odprtim problemom, ki se tičejo klasifikacije inverznih limit inverznih zaporedij zaprtih enotskih intervalov $[0,1]$ s po-šev-ni-mi šo-tor-ski-mi veznimi funkcijami z vrhovi v produktu $[0,1]times[0,1]$. Opisali bomo tudi zanimive probleme, ki so nastali ob razvijanju disertacije in še niso rešeni. Prikazali bomo ideje in potencialne pristope za njihovo reševanje.
Keywords: kontinuum, Brouwer-Janiszewski-Knasterjev kontinuum, inverzna limita, inverzno zaporedje, navzvgor polzvezna funkcija, večlična funkcija, vezna funkcija, šotorska funkcija, Ingramova domneva, s potmi povezan prostor, hiperprostor.
Published: 08.07.2013; Views: 1951; Downloads: 188
.pdf Full text (710,54 KB)

4.
Limite inverznih limit
Matej Merhar, 2013, doctoral dissertation

Abstract: V doktorski disertaciji se obravnava vprašanje ali iz konvergence grafov navzgor polzveznih veznih funkcij sledi konvergenca ustreznih pripadajočih inverznih limit za konstantna inverzna zaporedja kompaktnih metričnih prostorov. V uvodnem delu se vpeljejo osnovni pojmi kot so navzgor polzvezne funkcije, inverzna zaporedja in inverzne limite. V osrednjem delu se na konkretnih primerih pokaže, da je odgovor na zgoraj zastavljeno vprašanje v splošnem negativen in v obliki izrekov poda dodatne pogoje za vezne funkcije, ki zagotavljajo, da iz konvergence njihovih grafov sledi konvergenca pripadajočih inverznih limit. Med drugim se dokaže, da če so vezne funkcije surjektivne in funkcija h kateri njihovi grafi konvergirajo enolična, tedaj tudi zaporedje pripadajočih inverznih limit konvergira. Te pogoje se v nadaljevanju nekoliko omili in posploši na splošna inverzna zaporedja. Predstavi se tudi uporaba navedenih rezultatov za konstrukcijo poti v hiperprostorih. V zaključnem poglavju se navede še nekatera odprta vprašanja, ki odpirajo možnost nadaljnjega raziskovanja.
Keywords: kontinuum, hiperprostor, limita, inverzna limita, zvezna preslikava, navzgor polzvezna preslikava, pot
Published: 08.10.2013; Views: 1366; Downloads: 81
.pdf Full text (305,50 KB)

5.
On some topological aspects of Markus theory in homogeneous (quadratic) systems
Matej Mencinger, Milan Kutnjak, 2010, unpublished invited conference lecture

Keywords: matematika, topologija, limita, inverzna limita
Published: 10.07.2015; Views: 450; Downloads: 13
URL Link to full text

6.
7.
Ważewski's universal dendrite as an inverse limit with one set-valued bonding function
Iztok Banič, Matevž Črepnjak, Matej Merhar, Uroš Milutinović, Tina Sovič, 2012, original scientific article

Abstract: Konstruirana je družina navzgor polzveznih večličnih funkcij ▫$f:[0,1] rightarrow 2^{[0,1]}$▫, za katere velja, da je inverzna limita inverznega zaporedja intervalov ▫$[0,1]$▫ in ▫$f$▫ kot edine vezne preslikave homeomorfna univerzalnemu dendritu Ważevskega.
Keywords: topologija, kontinuum, inverzna limita, večlična funkcija, dendrit, univerzalni dendrit Ważevskega, topology, continua, inverse limits, upper semi-continuous functions, dendrites, Ważewski's universal dendrite
Published: 10.07.2015; Views: 438; Downloads: 103
URL Link to full text

8.
Uporaba in posplošitve Anderson-Choquetovega izreka
Daša Štesl, 2016, master's thesis

Abstract: V magistrskem delu dokažemo Anderson-Choquetov izrek za enolične funkcije in tip Anderson-Choquetovega izreka za večlične funkcije. Natančno je predstavljena tudi njuna uporaba.
Keywords: kontinuum, inverzna limita, enolične funkcije, večlične funkcije, Anderson-Choquetov izrek, Varšavski lok
Published: 18.04.2017; Views: 491; Downloads: 108
.pdf Full text (967,63 KB)

9.
Posplošene inverzne limite indeksirane z množico celih števil
Boštjan Lemež, 2018, master's thesis

Abstract: V magistrskem delu predstavimo posplošene inverzne limite indeksirane z množico celih števil in jih primerjamo s posplošenimi inverznimi limitami indeksiranimi z množico naravnih števil. Med drugim je skonstruirana takšna navzgor polzvezna vezna preslikava, da je inverzna limita zaprtih enotskih intervalov s to vezno preslikavo 3-celica.
Keywords: kontinuum, dimenzija, inverzna limita, inverzno zaporedje, navzgor polzvezna funkcija, večlična funkcija
Published: 20.09.2018; Views: 262; Downloads: 31
.pdf Full text (669,51 KB)

10.
Posplošitve markovskih funkcij in njihove inverzne limite
Tjaša Lunder, 2019, doctoral dissertation

Abstract: Disertacija se ukvarja s študijem posebnih tipov posplošenih inverznih limit. V disertaciji smo uspešno rešili problem izbire definicije posplošenih markovskih funkcij in definicije enakosti vzorcev dveh takšnih funkcij, ki nam omogoča, da se tudi za razred večličnih preslikav dokaže izrek analogen izreku Holtove v [11]. Izrek Holtove velja samo za surjektivne enolične markovske preslikave. Naš izrek pa velja tudi za večlične funkcije, velja celo brez predpostavke o surjektivnosti. Tako pri markovskih preslikavah kot pri naših, posplošenih markovskih preslikavah, so particije končne množice. V nadaljevanju disertacije smo pokazali, da je možna tudi nadaljnja posplošitev, pri kateri so particije števno neskončne. Na ta način smo vpeljali števno markovske funkcije ter enakost vzorcev števno markovskih preslikav. Tudi ti dve definiciji sta bili ustvarjeni tako, da sta omogočili dokaz izreka o homeomorfnosti posplošenih inverznih limit v primeru, kadar so vezne preslikave števno markovske funkcije z enakimi vzorci. Tudi ta izrek smo dokazali brez predpostavke o surjektivnosti. To teorijo smo v nadaljevanju aplicirali na šotorske funkcije in funkcije oblike N (dva posebna razreda enoličnih in večličnih funkcij). V zadnjem poglavju smo predstavili nekaj odprtih problemov.
Keywords: markovska preslikava, ve£li£na funkcija, navzgor polzvezna funkcija, posplo²ena markovska funkcija, ²tevno markovska funkcija, inverzno zaporedje, inverzna limita, ²otorska funkcija, funkcija oblike N.
Published: 19.02.2019; Views: 360; Downloads: 35
.pdf Full text (1,65 MB)

Search done in 0.16 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica