| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Enhancing trust in automated 3D point cloud data interpretation through explainable counterfactuals
Andreas Holzinger, Niko Lukač, Dzemail Rozajac, Emil Johnston, Veljka Kočić, Bernhard Hoerl, Christoph Gollob, Arne Nothdurft, Karl Stampfer, Stefan Schweng, Javier Del Ser, 2025, original scientific article

Abstract: This paper introduces a novel framework for augmenting explainability in the interpretation of point cloud data by fusing expert knowledge with counterfactual reasoning. Given the complexity and voluminous nature of point cloud datasets, derived predominantly from LiDAR and 3D scanning technologies, achieving interpretability remains a significant challenge, particularly in smart cities, smart agriculture, and smart forestry. This research posits that integrating expert knowledge with counterfactual explanations – speculative scenarios illustrating how altering input data points could lead to different outcomes – can significantly reduce the opacity of deep learning models processing point cloud data. The proposed optimization-driven framework utilizes expert-informed ad-hoc perturbation techniques to generate meaningful counterfactual scenarios when employing state-of-the-art deep learning architectures. The optimization process minimizes a multi-criteria objective comprising counterfactual metrics such as similarity, validity, and sparsity, which are specifically tailored for point cloud datasets. These metrics provide a quantitative lens for evaluating the interpretability of the counterfactuals. Furthermore, the proposed framework allows for the definition of explicit interpretable counterfactual perturbations at its core, thereby involving the audience of the model in the counterfactual generation pipeline and ultimately, improving their overall trust in the process. Results demonstrate a notable improvement in both the interpretability of the model’s decisions and the actionable insights delivered to end-users. Additionally, the study explores the role of counterfactual reasoning, coupled with expert input, in enhancing trustworthiness and enabling human-in-the-loop decision-making processes. By bridging the gap between complex data interpretations and user comprehension, this research advances the field of explainable AI, contributing to the development of transparent, accountable, and human-centered artificial intelligence systems.
Keywords: explainable AI, point cloud data, counterfactual reasoning, information fusion, interpretability, human-centered AI
Published in DKUM: 06.03.2025; Views: 0; Downloads: 6
.htm Full text (186,97 KB)

Search done in 0.01 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica