1.
Evolucijski algoritmi za učenje agenta umetne inteligence pri igranju splošnih videoiger : magistrsko deloMatjaž Vöröš, 2019, master's thesis
Abstract: Videoigre so elektronske igre, ki z uporabnikovo pomočjo na zaslonu pokažejo vizualno povratno informacijo izbranih potez. Njihov osnovni namen je zabava in krajšanje časa. V zadnjih petih letih se je z mednarodnim tekovanjem inteligentnih agentov za igranje iger (angl. General Video Game AI competition; v nadaljevanju GVGAI) začelo novo poglavje. Tekmovanje GVGAI od udeležencev zahteva stvaritev agenta, ki s pomočjo optimizacijskih algoritmov poskuša doseči najboljši možen rezultat. Ker se nam je tekmovanje GVGAI zdelo zelo zanimivo, smo se odločili ustvariti agenta, ki s pomočjo evolucijskih algoritmov pri igranju videoiger, doseže kar se da dober rezultat. Agenta smo zasnovali po pregledu obstoječih optimizacijskih algoritmov. Za razliko od ostalih agentov, naš agent uporablja diferencialno evolucijo, ki še ni bila prikazana na tekmovanjih GVGAI. Dobljene rezultate primerjamo s pomočjo primerjalnega preizkusa GVGAI, vidimo pa da je naš agent statistično signifikantno boljši od večine, a obstaja prostor za napredek.
Keywords: evolucijski algoritem, videoigre, optimizacija, agent, igranje splošnih videoiger
Published in DKUM: 21.06.2019; Views: 1923; Downloads: 167
Full text (11,19 MB)