2.
Assessing energy potential and chemical composition of food waste thermodynamic conversion products: a literature reviewAndreja Škorjanc,
Darko Goričanec,
Danijela Urbancl, 2024, original scientific article
Abstract: This study examines the considerable volume of food waste generated annually in Slovenia, which amounted to over 143,000 tons in 2020. The analysis shows that 40% of food waste consists of edible parts, highlighting the potential for reduction through increased consumer awareness and attitudes towards food consumption. The study shows that the consumption phase contributes the most to waste food (46%), followed by primary production (25%) and processing/manufacture (24%). The study addresses various thermodynamic processes, in particular, thermal conversion methods, such as torrefaction pyrolysis and hydrothermal carbonization, which optimize energy potential by reducing the atomic ratio (H/C) and (O/C), thereby increasing calorific value and facilitating the production of solid fuels. The main results show the effectiveness of torrefaction, pyrolysis and hydrothermal carbonization (HTC) in increasing the energy potential of food waste.
Keywords: energy, thermodynamic conversions, pyrolysis, torrefaction, hydrothermal carbonization, food waste, energy potential, chemical composition
Published in DKUM: 28.08.2024; Views: 53; Downloads: 6
Full text (591,41 KB)