1.
Carbon-free heat production for high-temperature heating systemsSven Gruber,
Klemen Rola,
Danijela Urbancl,
Darko Goričanec, 2023, original scientific article
Abstract: The article presents a new carbon-free heat production technology for district heating, which consists of a combined heat and power generation fuel cell (FC CHP) with CO2 capture and a two-stage cascade high-temperature heat pump (TCHHP). The FC generates heat and electricity, the latter being used to drive the compressors of the TCHHP. During the winter period, the water temperature achieved can occasionally be too low, so it would be heated up with hydrogen gas boilers. The hydrogen would be produced by reforming natural gas, synthetic methane, or biogas. The results are presented with natural gas utilization—the ratio between the obtained heat flow transferred directly to the water for district heating and the input heat flow of natural gas. In the case of a return water temperature of 60 °C and district heating temperature of 85 °C, the TCHHP, whose heat source is groundwater, achieves plant efficiency of 270.04% in relation to the higher heating value (HHV) and 241.74% in relation to the lower heating value (LHV) of natural gas. A case with a TCHHP whose heat source is low-temperature geothermal water achieves a plant efficiency of 361.36% in relation to the HHV and 323.49% in relation to the LHV.
Keywords: carbon-free, decarbonization of district heating systems, fuell cell, high-temperature district heating, high-temperature heat pump
Published in DKUM: 10.05.2024; Views: 233; Downloads: 17
Full text (3,32 MB)
This document has many files! More...