1. Aryl acrylate based high-internal-phase emulsions as precursors for reactive monolithic polymer supportsPeter Krajnc, Dejan Štefanec, Jane F. Brown, Neil R. Cameron, 2005, original scientific article Abstract: Water-in-oil high-internal-phase emulsions (HIPEs), containing 4-nitrophenyl acrylate and 2,4,6-trichlorophenyl acrylate as reactive monomers, were prepared and polymerized, and highly porous monolithic materials resulted. The novel materials were studied by combustion analysis, Fourier transform infrared spectroscopy scanning electron microscopy, mercury porosimetry, and N2 adsorption/desorption analysis. With both esters, cellular macroporous monolithic polymers were obtained: the use of 4-nitrophenyl acrylate resulted in a cellular material with void diameters between 3 and 7 m and approximately3-m interconnects, whereas the use of 2,4,6-trichlorophenyl acrylate yielded a foam with void diameters between 2 and 5 m, most interconnects being around 1 m. The resulting monoliths proved to be very reactive toward nucleophiles, and possibilities of functionalizing the novel polymer supports were demonstrated via reactions with amines bearing additional functional groups and via the synthesis of an acid chloride derivative. Tris(hydroxymethyl)aminomethane and tris(2-aminoethyl)amine derivatives were obtained. The hydrolysis of 4-nitrophenylacrylate removed thenitrophenyl group, yielding a monolithic acrylic acid polymer. Furthermore,functionalization to immobilized acid chloride was performed very efficiently, with more than 95% of the acid groups reacting. The measurement of the nitrogen content in 4-nitrophenyl acrylate poly(HIPE)s after various times of hydrolysis showed the influence of the total pore volume of the monolithic polymers on the velocity of the reaction, which was faster with themore porous polymer. Keywords: organic chemistry, macroporous polymers, monolithic polymer supports, emulsion polymerisation, foams, functionalization of polymers, high-internal-phase emulsions Published in DKUM: 01.06.2012; Views: 2329; Downloads: 98 Link to full text |
2. 4-vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsionDejan Štefanec, Peter Krajnc, 2005, original scientific article Abstract: 4-Vinylbenzyl chloride (VBC) based water-in-oil-in-water emulsions with 85% pore volume and 70% VBC in organic phase were prepared and polymerised by free radical polymerisation. Porous spherical particles of diameters between 50 and 150 m were obtained and their morphological structure and reactivity studied by FTIR spectroscopy, elemental analysis, optical microscopy, scanning electron microscopy and mercury intrusion porosimetry. Strong influence of the suspension stabiliser, namely poly(N-vinylpyrrolidone) (PVP), on the particle form was found. Diameters of spherical polymers particles depend on the PVP concentration, being larger with the lower concentration of PVP. Reactivity of novel supports was demonstrated by the reactions with piperidine, piperazine, tris(hydroxymethyl)methylamine and tris(2-aminoethyl)amine, all yielding corresponding amine derivatives. Keywords: multiple emulsions, polymer supports, 4-vinylbenzyl chloride, solid phase synthesis, solid phase synthesis, high internal phase emulsions Published in DKUM: 01.06.2012; Views: 2162; Downloads: 46 Link to full text |
3. Aryl acrylate porous functional polymer supports from water-in-oil-in-water multiple emulsionsDejan Štefanec, Peter Krajnc, 2007, original scientific article Abstract: Porous functional polymer supports are a class of material of wide interest due to the possibility of immobilising reactive species. A simplified procedure was applied for the preparation of porous polymer supports using a water-in-oil-in-water multiple emulsion. The primary emulsion was a high internal phase emulsion, having a volume fraction of water phase up to 95%. Two reactive acrylates, namely 4-nitrophenyl acrylate and 2,4,6-trichlorophenyl acrylate, were (separately) incorporated in the oil phase in order to obtain porous reactive polymer supports. Both acrylates were crosslinked with either divinylbenzene or ethylene glycol dimethacrylate, and beads of size ca 60 m were obtained after the polymerisation of droplets suspended into the secondary aqueous phase. In the case of 4-nitrophenyl acrylate and divinylbenzene as a crosslinker, particles with a star shape, the core being ca 60 m in diameter and the arms ca 180 m in length, were obtained. The polymers were functionalised with morpholine, tris(2-aminoethyl)amine, piperidine or piperazine yielding supports with loadings of reactive groups of between 2.6 and 6.6 mmol g-1. The results show that multiple emulsions can be precursors for porous polymer preparation. Keywords: multiple emulzije, polimerni nosilci, HIPE, organska sinteza na trdni fazi, polimerni lovilci, emulzija z visokim deležem notranje faze, aril akrilati, multiple emulsions, polymer supports, HIPE, solid phase organic synthesis, polymer supported scavengers, high internal phase emulsions, arylacrylates Published in DKUM: 31.05.2012; Views: 2945; Downloads: 115 Link to full text |
4. HYBRID PolyHIPE MATERIALSSebastijan Kovačič, 2011, dissertation Abstract: A new class of polyHIPE materials has been prepared using high internal phase emulsions (HIPEs) with monomers in both phases. Resulting materials, namely hybrid polyHIPE materials, are obtained consisting of hydrophobic matrix (consisted of styrene cross-linked with DVB or dicyclopentadiene) filled with hydrophilic polymer gel (polyacrylic acid or polyNIPAM) and exhibit morphology changes according to pH and temperature of the surrounding medium. Our focus with regards to the production of hybrid polyHIPE materials was the responsiveness of such materials used for flow control. This property is beneficial for controlling the flow of the solution through the monolithic polymers. Furthermore, polyHIPE materials have also been prepared by using ring opening metathesis polymerisation of monomers, such as dicyclopentadiene and norbornene. Obtained materials have Young’s moduli in the range of hundred times higher than standard polyHIPE materials with the same level of porosity which represents a very important improvement in the development of highly porous cellular polymeric materials. Keywords: emulsions, high internal phase emulsions, polymers, polyHIPEs, hybrid, hybrid polyHIPE materials, ROMP, flow-through, styrene, DVB, acrylic acid, NIPAM Published in DKUM: 04.05.2011; Views: 3490; Downloads: 328 Full text (3,71 MB) |