| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 1 / 1
First pagePrevious page1Next pageLast page
The influence of $Ce^{3+}$ ions on the corrosion rate of stainless steel in acidic solutions of different pH-values
Aljana Petek, Sebastijan Kovačič, 2014, original scientific article

Abstract: The corrosion resistance of AISI 420 stainless steel in 0.1 mol $L^{−1}$ $H_2SO_4$ + 0.1 mol $L^{−1}$ $Na_2SO_4$ solutions at different pH-values and the inhibiting effect of $Ce^{3+}$ ions was studied using electrochemical polarization methods. The results reveal decreasing of the corrosion rate with an increasing the pH of the solution, which demonstrates the progressive protective character of the inhibitor used. At pH lower than 3.33, the corrosion inhibition was most probably a result of the competitive adsorption of $Ce^{3+}$ with $H^+$ ions on the cathodic sites of the electrode surface, and it was found to be dependent on the relative concentration of $H^+$/$Ce^{3+}$. The peroxide generated from the oxygen reduction reaction at pH 3.33 was found to be capable oxidize trivalent cerium (Ce) to the tetravalent state. As obtained hydroxide precipitates act as diffusion barrier hindering the corrosion processes, whereafter a spontaneous passivity occurs on the steel surface at this pH.
Keywords: acid corrosion, green corrosion inhibitor, stainless steel, electrochemical techniques
Published: 24.07.2017; Views: 590; Downloads: 251
.pdf Full text (463,32 KB)
This document has many files! More...

Search done in 0.05 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica