| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 5 / 5
First pagePrevious page1Next pageLast page
1.
2.
Ribotype classification of Clostridioides difficile isolates Is not predictive of the amino acid sequence diversity of the toxin virulence factors TcdA and TcdB
Zhenghui Li, Kwok Lee, Urvi Rajyaguru, C. Hal Jones, Sandra Janežič, Maja Rupnik, Annaliesa S. Anderson, Paul Liberator, 2020, original scientific article

Abstract: Clostridioides (Clostridium) difficile is the most commonly recognized cause of infectious diarrhea in healthcare settings. Currently there is no vaccine to prevent initial or recurrent C. difficile infection (CDI). Two large clostridial toxins, TcdA and TcdB, are the primary virulence factors for CDI. Immunological approaches to prevent CDI include antibody-mediated neutralization of the cytotoxicity of these toxins. An understanding of the sequence diversity of the two toxins expressed by disease causing isolates is critical for the interpretation of the immune response to the toxins. In this study, we determined the whole genome sequence (WGS) of 478 C. difficile isolates collected in 12 countries between 2004 and 2018 to probe toxin variant diversity. A total of 44 unique TcdA variants and 37 unique TcdB variants were identified. The amino acid sequence conservation among the TcdA variants (>98%) is considerably greater than among the TcdB variants (as low as 86.1%), suggesting that different selection pressures may have contributed to the evolution of the two toxins. Phylogenomic analysis of the WGS data demonstrate that isolates grouped together based on ribotype or MLST code for multiple different toxin variants. These findings illustrate the importance of determining not only the ribotype but also the toxin sequence when evaluating strain coverage using vaccine strategies that target these virulence factors. We recommend that toxin variant type and sequence type (ST), be used together with ribotype data to provide a more comprehensive strain classification scheme for C. difficile surveillance during vaccine development objectives.
Keywords: Clostridioides difficile, Clostridium difficile, TCDB, TcdA, vaccines, whole genome sequencing
Published in DKUM: 28.01.2025; Views: 0; Downloads: 6
.pdf Full text (1,21 MB)
This document has many files! More...

3.
Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C
Changhan Lee, Jens Klockgether, Sebastian Fischer, Janja Trček, Burkhard Tümmler, Ute Römling, 2020, review article

Abstract: The environmental species Pseudomonas aeruginosa thrives in a variety of habitats. Within the epidemic population structure of P. aeruginosa, occassionally highly successful clones that are equally capable to succeed in the environment and the human host arise. Framed by a highly conserved core genome, individual members of successful clones are characterized by a high variability in their accessory genome. The abundance of successful clones might be funded in specific features of the core genome or, although not mutually exclusive, in the variability of the accessory genome. In clone C, one of the most predominant clones, the plasmid pKLC102 and the PACGI-1 genomic island are two ubiquitous accessory genetic elements. The conserved transmissible locus of protein quality control (TLPQC) at the border of PACGI-1 is a unique horizontally transferred compository element, which codes predominantly for stress-related cargo gene products such as involved in protein homeostasis. As a hallmark, most TLPQC xenologues possess a core genome equivalent. With elevated temperature tolerance as a characteristic of clone C strains, the unique P. aeruginosa and clone C specific disaggregase ClpG is a major contributor to tolerance. As other successful clones, such as PA14, do not encode the TLPQC locus, ubiquitous denominators of success, if existing, need to be identified.
Keywords: disaggregase, FtsH, genomic island, protein homeostasis, pulsed field gel electrophoresis, whole genome sequencing
Published in DKUM: 28.01.2025; Views: 0; Downloads: 5
.pdf Full text (5,39 MB)
This document has many files! More...

4.
Complex population structure and haplotype patterns in the Western European honey bee from sequencing a large panel of haploid drones
David Wragg, Sonia E. Eynard, Benjamin Basso, Kamila Canale-Tabet, Emmanuelle Labarthe, Olivier Bouchez, Kaspar Bienefeld, Małgorzata Bieńkowska, Cecilia Costa, Aleš Gregorc, Per Kryger, Melanie Parejo, Alice M. Pinto, Jean-Pierre Bidanel, Bertrand Servin, Yves Le Conte, Alain Vignal, 2022, original scientific article

Abstract: Honey bee subspecies originate from specific geographical areas in Africa, Europe and the Middle East, and beekeepers interested in specific phenotypes have imported genetic material to regions outside of the bees' original range for use either in pure lines or controlled crosses. Moreover, imported drones are present in the environment and mate naturally with queens from the local subspecies. The resulting admixture complicates population genetics analyses, and population stratification can be a major problem for association studies. To better understand Western European honey bee populations, we produced a whole genome sequence and single nucleotide polymorphism (SNP) genotype data set from 870 haploid drones and demonstrate its utility for the identification of nine genetic backgrounds and various degrees of admixture in a subset of 629 samples. Five backgrounds identified correspond to subspecies, two to isolated populations on islands and two to managed populations. We also highlight several large haplotype blocks, some of which coincide with the position of centromeres. The largest is 3.6 Mb long and represents 21% of chromosome 11, with two major haplotypes corresponding to the two dominant genetic backgrounds identified. This large naturally phased data set is available as a single vcf file that can now serve as a reference for subsequent populations genomics studies in the honey bee, such as (i) selecting individuals of verified homogeneous genetic backgrounds as references, (ii) imputing genotypes from a lower-density data set generated by an SNP-chip or by low-pass sequencing, or (iii) selecting SNPs compatible with the requirements of genotyping chips.
Keywords: genome, haplotype, honey bee, population genetics, SNP
Published in DKUM: 08.07.2024; Views: 109; Downloads: 15
.pdf Full text (3,07 MB)
This document has many files! More...

5.
Relationship between genome and epigenome - challenges and requirements for future research
Geneviève Almouzni, Neža Grgurevič, Gregor Majdič, Uroš Potočnik, Janez Ilaš, 2014, other scientific articles

Abstract: Understanding the links between genetic, epigenetic and non-genetic factors throughout the lifespan and across generations and their role in disease susceptibility and disease progression offer entirely new avenues and solutions to major problems in our society. To overcome the numerous challenges, we have come up with nine major conclusions to set the vision for future policies and research agendas at the European level.
Keywords: genome, epigenome, microbiome, environment
Published in DKUM: 28.06.2017; Views: 1168; Downloads: 404
.pdf Full text (482,56 KB)
This document has many files! More...

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica