| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling
Petra Žohar, Miha Kovačič, Miran Brezočnik, Matej Podbregar, 2005, original scientific article

Abstract: Atrial fibrillation (AF) is the most common rhythm disorder. Because of the high recurrence rate of AF after cardioversion and because of potential side effects of electrical cardioversion, it is clinically important to predict persistence of sinus rhythm after electrical cardioversion before it is attempted. The aim of our study was the development of a mathematical model by"genetic" programming (GP), a non-deterministic modelling technique, which would predict maintenance of sinus rhythm after electrical cardioversion of persistent AF. PATIENTS AND METHODS: Ninety-seven patients with persistent AF lasting more than 48 h, undergoing the first attempt at transthoracic cardioversion were included in this prospective study. Persistence of AF before the cardioversion attempt, amiodarone treatment, left atrial dimension,mean, standard deviation and approximate entropy of ECG R-R intervals were collected. The data of 53 patients were randomly selected from the database and used for GP modelling; the other 44 data sets were used for model testing. RESULTS: In 23 patients sinus rhythm persisted at 3 months. In the other 21 patients sinus rhythm was not achieved or its duration was less than 3 months. The model developed by GP failed to predict maintenance ofsinus rhythm at 3 months in one patient and in six patients falsely predicted maintenance of sinus rhythm. Positive and negative likelihood ratiosof the model for testing data were 4.32 and 0.05, respectively. Using this model 15 of 21 (71.4%) cardioversions not resulting in sinus rhythm at 3 months would have been avoided, whereas 22 of 23 (95.6%) cardioversions resulting in sinus rhythm at 3 months would have been administered. CONCLUSION: This model developed by GP, including clinical data, ECG data from the time-domain and nonlinear dynamics can predict maintenance of sinus rhythm. Further research is needed to explore its utility in the present or anexpanded form.
Keywords: optimisation methods, evolutionary optimisation methods, genetic algorithms, genetic programming, defibrillation, cardiac arrest prediction, atrial fibrillation, electrical cardioversion, prediction
Published: 01.06.2012; Views: 1248; Downloads: 46
URL Link to full text

2.
Predicting defibrillation success by "genetic" programming in patients with out-of-hospital cardiac arrest
Matej Podbregar, Miha Kovačič, Aleksandra Podbregar-Marš, Miran Brezočnik, 2003, original scientific article

Abstract: In some patients with ventricular fibrillation (VF) there may be a better chance of successful defibrillation after a period of chest compression and ventilation before the defibrillation attempt. It is therefore important to know whether a defibrillation attempt will be successful. The predictive powerof a model developed by "genetic" programming (GP) to predict defibrillation success was studied. Methods and Results: 203 defibrillations were administered in 47 patients with out-of-hospital cardiac arrest due to a cardiac cause. Maximal amplitude, a total energy of power spectral density, and the Hurst exponent of the VF electrocardiogram (ECG) signal were included in the model developed by GP. Positive and negative likelihood ratios of the model for testing data were 35.5 and 0.00, respectively. Using a model developed by GP on the complete database, 120 of the 124 unsuccessful defibrillations would have been avoided, whereas all of the 79 successful defibrillations would have been administered. Conclusion: The VF ECG contains information predictive of defibrillation success. The model developed by GP, including data from the time-domain, frequency-domain and nonlinear dynamics, could reduce the incidence of unsuccessful defibrillations.
Keywords: optimisation methods, evolutionary optimisation methods, genetic algorithms, genetic programming, defibrillation, cardiac arrest prediction
Published: 01.06.2012; Views: 992; Downloads: 56
URL Link to full text

3.
Modeling of forming efficiency using genetic programming
Miran Brezočnik, Jože Balič, Zlatko Kampuš, 2001, original scientific article

Abstract: This paper proposes new approach for modeling of various processes in metal-forming industry. As an example, we demonstrate the use of genetic programming (GP) for modeling of forming efficiency. The forming efficiency is a basis for determination of yield stress which is the fundamental characteristic of metallic materials. Several different genetically evolved models for forming efficiency on the basis of experimental data for learning were discovered. The obtained models (equations) differ in size, shape, complexity and precision of solutions. In one run out of many runs of our GP system the well-known equation of Siebel was obtained. This fact leads us to opinion that GP is a very powerful evolutionary optimization method appropriate not only for modeling of forming efficiency but also for modeling of many other processes in metal-forming industry.
Keywords: metal forming, yield stress, forming efficiency, mathematical modeling, adaptation, genetic methods, genetic algorithm, genetic programming, artificial intelligence, process optimisation
Published: 01.06.2012; Views: 1110; Downloads: 62
URL Link to full text

4.
The usage of genetic methods for prediction of fabric porosity
Polona Dobnik-Dubrovski, Miran Brezočnik, 2012, independent scientific component part or a chapter in a monograph

Keywords: fabrics, porosity, genetic methods
Published: 10.07.2015; Views: 617; Downloads: 52
URL Link to full text

Search done in 0.07 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica