1. Identities with generalized derivations in prime ringsMaja Fošner, Joso Vukman, 2012, original scientific article Abstract: In this paper we investigate identities with two generalized derivations in prime rings. We prove, for example, the following result. Let ▫$R$▫ be a prime ring of characteristic different from two and let ▫$F_1, F_2 colon R to R$▫ be generalized derivations satisfying the relation ▫$F_1(x)F_2(x) + F_2(x)F_1(x) = 0$▫ for all ▫$x in R$▫. In this case either ▫$F_1 = 0$▫ or ▫$F_2 = 0$▫. Keywords: matematika, prakolobar, polprakolobar, odvajanje, posplošeno odvajanje, mathematics, prime ring, semiprime ring, derivation, generalized derivation Published in DKUM: 10.07.2015; Views: 1212; Downloads: 100 Link to full text |
2. On (anti-)multiplicative generalized derivationsDaniel Eremita, Dijana Ilišević, 2012, original scientific article Abstract: Naj bo ▫$R$▫ polprakolobar in naj bosta ▫$F, f colon R to R$▫ taki (ne nujno aditivni) preslikavi, da je ▫$F(xy) = F(x)y + xf(y)$▫ za vse ▫$x,y in R$▫. Denimo, da obstajata taki celi števili ▫$m$▫ in ▫$n$▫, da velja ▫$F(uv) = mF(u)F(v) + nF(v)F(u)$▫ za vse elemente ▫$u$▫, ▫$v$▫ neničelnega ideala ▫$I$▫ kolobarja ▫$R$▫. Ob določenih blagih predpostavkah za polprakolobar ▫$R$▫ dokažemo, da obstaja tak ▫$c in C(I^{botbot})$▫, da je ▫$c = (m+n)c^2$▫, ▫$nc[I^{botbot}, I^{botbot}] = 0$▫ in ▫$F(x) = cx$▫ za vse ▫$x in I^{botbot}$▫. Glavni rezultat je nato uporabljen v primeru, ko je preslikava ▫$F$▫ multiplikativna ali antimultiplikativna na idealu ▫$I$▫. Keywords: matematika, algebra, aditivnost, kolobar, prakolobar, polprakolobar, odvajanje, posplošeno odvajanje, homomorfizem, antihomomorfizem, algebra, additivity, ring, prime ring, semiprime ring, derivation, generalized derivation, homomorphism, anti-homomorphism Published in DKUM: 10.07.2015; Views: 2042; Downloads: 142 Link to full text |
3. Maps preserving zero productsJ. Alaminos, Matej Brešar, J. Extremera, A. R. Villena, 2009, original scientific article Abstract: Linearna preslikava ▫$T$▫ iz Banachove algebre ▫$A$▫ v Banachovo algebro ▫$B$▫ ohranja ničelni produkt, če je ▫$T(a)T(b) = 0$▫, kadarkoli je ▫$ab = 0$▫. Glavna tema članka je vprašanje, kdaj je zvezna linearna surjektivna preslikava ▫$T: A to B$▫, ki ohranja ničelni produkt, uteženi homomorfizem. Dokažemo, da to velja za velik razred algeber, ki vključuje grupne algebre. Naša metoda sloni na obravnavi bilinearnih preslikav ▫$phi : A times A to X$▫ (kjer je ▫$X$▫ Banachov prostor) z lastnostjo, da iz ▫$ab=0$▫ sledi ▫$phi(a,b) = 0$▫. Dokažemo, da taka preslikava zadošča ▫$phi(amu, b) = phi(a,mu b)$▫ za vse ▫$a,b in A$▫ in vse ▫$mu$▫ iz zaprtja glede na krepko operatorsko topologijo podalgebre multiplikacijske algebre ▫${mathcal M}(A)$▫ generirane z dvostranko potenčno omejenimi elementi. Ta metoda je uporabna tudi za karakterizacijo odvajanj s pomočjo ničelnega produkta. Keywords: matematika, teorija operatorjev, grupna algebra, ▫$C^ast$▫-algebra, homomorfizem, uteženi homomorfizem, odvajanje, posplošeno odvajanje, mathematics, operator theory, group algebra, ▫$C^ast$▫-algebra, homomorphism, weighted homomorphism, derivation, generalized derivation, separating map, disjointness preserving map, zero product preserving map, doubly power-bounded element Published in DKUM: 10.07.2015; Views: 1301; Downloads: 99 Link to full text |
4. |