| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 41
First pagePrevious page12345Next pageLast page
1.
Influence of Heat Treatments on Microstructure of Electron Beam Additive Manufactured Ti-6Al-4V Alloy
Damir Skuhala, 2020, master's thesis

Abstract: Additive manufacturing of metallic parts is increasing in popularity and starting to emerge as a new competitive manufacturing process. Printed structures from Ti-6Al-4V titanium alloy, produced by electron beam additive manufacturing (EBAM), possess columnar prior β grains and layer bands, alongside an ultrafine lamellar microstructure, which is prone to low ductility and thus requiring thermal post-processing. Several heat treatments were performed in α + β and β field, in one or multiple stages. The results showed that bi-lamellar microstructure can be obtained, and that selection of annealing temperature and cooling rate determines the morphology, thickness, and distribution of both primary and secondary α features. Mechanical properties were evaluated on three selected heat treatments. Annealing of the As-built condition was performed at 710°C (HT1) and 870°C (HT2), resulting in lamellar microstructure with basketweave morphology. In two-stage heat treatment (HT3), the temperature in the first stage has exceeded β transus, while in the second, annealing was performed again at 870°C. The microstructure was characterized as a mixture of lamellar and bi-lamellar with large α colonies inside the rearranged prior β grains. Air cooling was performed in all HT from the final annealing stage. Strength and hardness have decreased with increasingly coarser microstructural features, while fracture toughness was improved, except in HT1, where the decrease in the fracture toughness was mainly attributed to reduced intrinsic toughening. As-built and HT1 conditions were effected by microstructural texture, causing inconsistent fracture morphology, reduced crack roughness and scattering in results. The influence of texture was decreased by coarser microstructure in HT2, while crack tortuosity was increased. Very unpredictable fracture behaviour was observed in HT3 due to large α colonies, as their orientation determines the areas of ductile or cleavage crack propagation.
Keywords: Titanium alloys, Ti-6Al-4V, additive manufacturing, EBAM, heat treatments, microstructural optimization, mechanical properties, fracture toughness
Published: 11.05.2020; Views: 491; Downloads: 139
.pdf Full text (25,14 MB)

2.
A multiscale approach to deformation and fracture of heat-resistant steel under static and cyclic loading
P. O. Maruščak, Denys Baran, Vladimir Gliha, 2013, original scientific article

Abstract: Regularities of static and cyclic deformation, damage and fracture of heat-resistant steel 25Kh1M1F, based on the approaches of physical mesomechanics and 3D interferometry method, are presented in this paper. The applicability of these techniques for different hierarchy levels of deformation was studied. The investigation of scanning microscope photos was conducted for several dissipative structures, fragmentation of the material, localisation of macrodeformation and subsequent failure on macro- and mesolevel. It is shown that the used modern techniques of experimental analysis are very efficient in understanding deformation and damage evolution in materials.
Keywords: fracture, heat-resistant steel, cyclic loading, fatigue, plastic deformation
Published: 18.08.2017; Views: 588; Downloads: 273
.pdf Full text (2,42 MB)
This document has many files! More...

3.
Intelligent system for prediction of mechanical properties of material based on metallographic images
Matej Paulič, David Močnik, Mirko Ficko, Jože Balič, Tomaž Irgolič, Simon Klančnik, 2015, original scientific article

Abstract: This article presents developed intelligent system for prediction of mechanical properties of material based on metallographic images. The system is composed of two modules. The first module of the system is an algorithm for features extraction from metallographic images. The first algorithm reads metallographic image, which was obtained by microscope, followed by image features extraction with developed algorithm and in the end algorithm calculates proportions of the material microstructure. In this research we need to determine proportions of graphite, ferrite and ausferrite from metallographic images as accurately as possible. The second module of the developed system is a system for prediction of mechanical properties of material. Prediction of mechanical properties of material was performed by feed-forward artificial neural network. As inputs into artificial neural network calculated proportions of graphite, ferrite and ausferrite were used, as targets for training mechanical properties of material were used. Training of artificial neural network was performed on quite small database, but with parameters changing we succeeded. Artificial neural network learned to such extent that the error was acceptable. With the oriented neural network we successfully predicted mechanical properties for excluded sample.
Keywords: artificial neural network, factor of phase coherence between the surfaces, fracture toughness, image processing, mechanical properties, metallographic image, ultimate tensile strength, yield strength
Published: 12.07.2017; Views: 726; Downloads: 343
.pdf Full text (2,02 MB)
This document has many files! More...

4.
Experimental determination of fatigue parameters of high chromium steel under different loading and temperature conditions
Matej Drobne, Nenad Gubeljak, Srečko Glodež, 2014, original scientific article

Abstract: Fatigue investigation of high chromium steel (HCS) at different loading ratios (R = 0, R = -1) and different temperatures (20 °C, 600 °C) is presented in this paper. Before fatigue testing, monotonic mechanical properties (ultimate compressive and ultimate tensile strength) are determined at different temperatures, using standardized testing procedures according to DIN 50125 standard. Moreover Charpy impact tests at different temperatures were done with specimens that comply with the standard ISO 14556. Fatigue testing is performed on a servo - hydraulic testing machine with consideration of different loading conditions as described above. On the basis of the experimental results the S - N curves are constructed from which typical fatigue parameters (the fatigue strength coefficient 0'f and the fatigue strength exponent b) are determined. After fatigue testing a comprehensive investigation of fracture surfaces is performed using the Scanning Electron Microscope (SEM). Experimental results presented in this paper will serve as a basis for further investigations related to fatigue behaviour of real working rolls in hot strip mills made of HCS.
Keywords: experiments, high chromium steel, high cycle fatigue, fracture mechanics
Published: 12.07.2017; Views: 538; Downloads: 101
.pdf Full text (2,88 MB)
This document has many files! More...

5.
Fatigue crack growth and fracture mechanics analysis of a working roll surface layer material
Matej Drobne, Tomaž Vuherer, Ivan Samardžić, Srečko Glodež, 2014, original scientific article

Abstract: Fatigue crack growth and fracture mechanics analysis of a working roll surface layer material is presented in this paper. The research is done on a hot strip mill working roll where High Chromium Steel is used for roll’s shell material. To obtain corresponding parameters, a rectangular single edge notched bend specimens – SENB, according to standard BS 7448, were used. The fatigue crack growth analysis was done on a resonant testing machine with use of special crack gauges, while for fracture mechanics parameters the electro–mechanical testing machine was used.
Keywords: fracture mechanics, fatigue crack growth, metal forming, rolling process, high chromium steel
Published: 03.07.2017; Views: 523; Downloads: 82
.pdf Full text (1,11 MB)
This document has many files! More...

6.
Factors influencing the yielding constraint by cracked welded components
Dražan Kozak, Jelena Vojvodič-Tuma, Nenad Gubeljak, Damir Semenski, 2005, original scientific article

Abstract: The effect of strength mismatch for welded joints performed with different geometries on the yielding constraint has been investigated in the context of single-edged fracture-toughness specimens subjected to bending SE(B) using the finite-element method. The crack was located in the centre of the weld. Two geometri cal parameters have been identified as being the most important: the crack-Iength ratio a/W and the sIenderness of the welded joint (W-a)/H. They were systematically varied as follows: a/W = 0.1; 0.2; 0.3; 0.4; 0.5 and W = 2H, 4H, 8H, 16H, 24H. Basic equations and plane-strain finite-element solutions for the overmatched SE(B) specimen with all configuration combinations are given. The results are in good agreement with those in literature. This paper aims to establish yield-Ioad solutions for the same weldment configurations, but with materials dissimilarity present within the weld. This situation is usually encountered during repair welding. For this purpose, a practical combination of filler materials, with the same portion of overmatched part with M = 1.19 and undermatched part with M = 0.86, has been selected. Plane-strain solutions for the heterogeneous weld with the cracklocated in the overmatched half were obtained. The influence of the yielding-constraint key parameters has al so been evaluated. Yield-Ioad results for the specimens performed with different weld widths have the greatest scattering for the a/W = 0.5. The transition from the overmatched to the undermatched solution with increasing H is evident. On the other hand, the behaviour of the specimen with a shallow crack is dictated by the overmatch region ahead of the crack tip and depends very little on the weld slenderness. An approximated 3-D area of the yield-Ioad solutions depending ona/W and (W-a)lH has been proposed. Furthermore, the stress triaxility parameter h has been calculated using 2-D and 3-D finite-element analysis, and given as a field in the spec imen to get an insight into yielding-constraint regions. It was found that the 3-D yield-Ioad solutions are very close to the plane-strain solutions. Also, the effect of a/W on the yielding constraint is more significant than the effect of Mand (W-a)/H.
Keywords: welded structures, welded joints, fracture mechanics, cracks, SE(B) specimens, yielding load, yielding constraint parameters
Published: 06.04.2017; Views: 863; Downloads: 72
.pdf Full text (793,79 KB)
This document has many files! More...

7.
Low temperature impact toughness of the main gas pipeline steel after long-term degradation
P. O. Maruščak, Irina Danyliuk, R.T. Biščak, Tomaž Vuherer, 2014, original scientific article

Abstract: The correlation of microstructure, temperature and Charpy V-notch impact properties of a steel 17G1S pipeline steel was investigated in this study. Within the concept of physical mesomechanics, the dynamic failure of specimens is represented as a successive process of the loss of shear stability, which takes place at different structural/scale levels of the material. Characteristic stages are analyzed for various modes of failure, moreover, typical levels of loading and oscillation periods, etc. are determined. Relations between low temperature derived through this test, microstructures and Charpy (V-notch) toughness test results are also discussed in this paper.
Keywords: impact toughness, fracture, damage, gas pipeline, steel, degradation
Published: 03.04.2017; Views: 721; Downloads: 336
.pdf Full text (699,32 KB)
This document has many files! More...

8.
Fracture toughness of a high-strength low-alloy steel weldment
Jelena Vojvodič-Tuma, Nenad Gubeljak, Borivoj Šuštaršič, Borut Bundara, 2006, original scientific article

Abstract: The use of high-strength low-alloy steels for high-performance structures, e.g., pressure vessels and pipelines, requires often high-strength consumables to produce an overmatched welded joint. This globally overmatched welded joint contains local mis-matched regions, which can affect the unstable fracture behaviour of the welded joint and the welded structure itself. If local mis-matched regions are present in the vicinity of a crack tip, then the fracture toughness of the weld metal can be significantly lower than that of the base metal. In this paper, the influence of the weld-metal microstructure on the fracture behaviour is estimated enabling an evaluation of the resistance to stable crack growth through different microstructures. The lower bound of the fracture toughness for different microstructures was evaluated using a modified Weibull distribution. The results, obtained using specimens with a through thickness crack front, indicated a low fracture toughness, caused by the strength mis-matching interaction along the crack front. In the case of through-the-thickness specimens, at least one local brittle zone (LBZ) or a local soft region is incorporated into the process zone in the vicinity of the crack tip. Hence, an unstable fracture occurred with small stable crack propagation, or without it. Despite the fact that the differences between the impact toughness of the weld metal and the base metal can be insignificant, the fracture toughness of a weld metal can be significantly lower.
Keywords: fracture mechanics, welded joint, crack-tip opening displacement, resistance curves
Published: 16.03.2017; Views: 672; Downloads: 62
.pdf Full text (502,10 KB)
This document has many files! More...

9.
Flaw acceptability assessment detected in HSLA steel weld joints
Inoslav Rak, 1999, original scientific article

Abstract: The flow size in weld joint can be determined by non destructive examination (NDE). Because of different mateials, and loading as well as because of the possible effect of corrosive environment the question arises how to assess reliably the allowable falw size in different weld joint parts. The presence of flaws is obvious but the possibilities of their revealing are limited and not always posssible. The flaw size and distribution are the essential parameters for the structure capacity of bearing under high loading the weld joint. The larger is the allowable flaw size anticipated, the safer is the welded structure, and the easiest is the detection of the flaw size by NDE methods. Thus for assessing the safety of complex loaded welded structure, machine parts or equipment life time, it is obligatory to consider the requirements of different "Fitness for Purpose" systems. The article presents the possibility of assessing the detected flaw by means of NDE if the material fracture toughness of the area where the fatigue crack tip located is known. The fatigue crack represents the severest discontinuity that can occur in a welded joint. The principles of IIW Guidance on Assessment of The Fitness for Purpose of Welded Structures - IIW/IIS-SST-1157-90 and BS PD 6493 and separately ETM that treats mis-matched weld joints are shown and used.
Keywords: zvarni spoji, dopustna velikost napake, lomna žilavost, trdnostna heterogenost, primernost za uporabo, weld joint, allowable flaw size, fracture toughness, strength mis-match, fitness for purpose
Published: 10.07.2015; Views: 871; Downloads: 11
URL Link to full text

10.
Weld joint fracture behaviour of HSLA steels dissimilar in strength
Inoslav Rak, Arpad Treiber, 1998, original scientific article

Abstract: The effect of strength differences (mismatch) between weld metal and two base metals as well as local variations of strength within weld metal/HAZ zones on the toughness properties were discussed. The significance of local fracture toughness measurement technique was also discussed by comparing the CTOD results of [delta]5 and British Standard [delta]BS. Some differences between the two techniqes were discussed in particular for CGHAZ toughness of similar and dissimilar joints.
Keywords: welding, welded joints, fracture mechanics, HSLA steels, fracture toughness
Published: 10.07.2015; Views: 843; Downloads: 24
URL Link to full text

Search done in 0.32 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica