| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Formation and characterization of fucus virsoides j. agardh pigment–polyethylene glycol microparticles produced
Marija Banožić, Maja Čolnik, Mojca Škerget, Ana-Marija Cikoš, Krunoslav Aladić, Stela Jokić, 2022, original scientific article

Abstract: The particles from the gas-saturated solutions (PGSS) process was employed to micronize brown algae pigments separated by different extraction techniques. The particle formation of pigments with a coating material, polyethylene glycol (PEG), was carried out by the PGSS process using supercritical CO2. Environmental scanning electron microscopy (ESEM) and Fourier-transform infrared spectroscopy (FTIR) were performed to characterize the produced particles, while encapsulation efficiency was determined using spectrophotometric methods. The physical properties of obtained microparticles were also determined. The PGSS process enabled a high encapsulation yield in the range from 61.60 to 73.73%, and high encapsulation efficiency in terms of chlorophyll a, chlorophyll b, and carotenoid content. The release of CO2 during the PGSS process gave the microparticles their characteristic open and porous form, and enhanced the solubility and flow properties at the same time.
Keywords: Fucus virsoides J. Agardh, pigment, encapsulation, particles from gas-saturated solutions
Published in DKUM: 16.08.2023; Views: 246; Downloads: 20
.pdf Full text (3,71 MB)
This document has many files! More...

2.
Nanoliposome encapsulation with donkey milk bioactive proteins and its possible application in dermatology and cosmetics
Hristina Kocić, Milica Stanković, Ivana Arsić, 2017, original scientific article

Abstract: Nanoliposomes represent natural or synthetic nanoparticles made of phospholipids, which may spontaneously aggregate in an aqueous medium. Their use in dermatology and for cosmetic purposes may offer facilitated delivery in skin via enhanced opening of the tight junctions between the epithelial cell monolayers. As far as their use in dermatology is concerned, both transdermal and local application may offer successful release profile. Donkey milk may have special therapeutic properties when used in cosmetology for skin treatment. The aim of our study was to establish encapsulation efficacy of nanoliposome loaded with skimmed donkey milk and to explore the efficiency of encapsulation of different skimmed donkey milk concentrations in nanoliposomes. In our experimental study, it was documented that 1%, 2% and 5% solutions of skimmed donkey milk were almost equally effectively encapsulated, more than 80% in 1% solution of nanoliposomes, while 10% solution of skimmed donkey milk was encapsulated more efficiently, with 88.9% in 1% of nanoliposome solution. Encapsulation can lead to greater efficiency by enabling the use of lower administration doses and preventing the corresponding side effects, which may be the result of higher doses. Skimmed donkey milk is a suitable encapsulation solution.
Keywords: nanoliposomes, donkey milk, encapsulation efficacy
Published in DKUM: 07.05.2018; Views: 1397; Downloads: 343
.pdf Full text (398,24 KB)
This document has many files! More...

3.
Effects of ultrasound irradiation on the preparation of ethyl cellulose nanocapsules containing spirooxazine dye
Julija Volmajer Valh, Simona Vajnhandl, Lidija Škodič, Aleksandra Lobnik, Matejka Turel, Bojana Vončina, 2017, original scientific article

Abstract: This article presents the influence of low frequency, high intensity ultrasonic irradiation on the characteristics (average size, polydispersity index) of ethyl cellulose nanocapsules encapsulating a photochromic dye. Photochromic nanocapsules were prepared by the emulsion-solvent evaporation method. The acoustic densities entering the system were systematically studied with respect to their abilities to modify and reduce the average sizes and polydispersity indexes of the nanocapsules. Scanning electron microscope, confocal laser microscope, and dynamic light scattering were utilised to characterise the structure, shape, size, and polydispersity of ethyl cellulose photochromic nanocapsules. We were able to tailor the size of the photochromic nanocapsules simply by varying the acoustic densities entering the system. At an acoustic density of 1.5 W/mL and 60 s of continuous irradiation, we were able to prepare an almost monodispersed population of the nanocapsules with an average size of 193 nm.
Keywords: encapsulation, ethyl cellulose microcapsules, nanocapsules
Published in DKUM: 09.08.2017; Views: 1441; Downloads: 365
.pdf Full text (3,31 MB)
This document has many files! More...

4.
Extraction and separation of active compounds by supercritical fluids extraction and preparative supercritical chromatography
Alejandro Bartolome Ortega, 2017, doctoral dissertation

Abstract: This doctoral dissertation is focused on the benefits of supercritical fluids technology in several industry processes. Although, supercritical CO2 is currently the most employed supercritical fluid at laboratory scale, its presence in the industry field is still limited, due to the necessity of high investment costs. Despite that fact, operations with supercritical CO2 are cheap, environmentally friendly and simple, which make it an excellent alternative to organic compounds. Extraction and separation of highly pure active compounds, such as xanthohumol or beta-sitosterol, are demanded for pharmaceutical or food industries, which create an excellent opportunity for supercritical CO2 operations, since they are solvent free. This manuscript is divided into three different parts. In the first part, conventional extraction processes and supercritical fluid process are theoretically compared and supercritical fluid extraction from saw palmetto berries is presented. In the second part, conventional chromatographic techniques and supercritical fluid chromatography are theoretically compared and separation of xanthohumol from hop extracts by supercritical fluid chromatography is presented. In the last part, different encapsulation and emulsification processes are listed and defined. These processes are very important for food and pharmaceutical companies, since several active compounds are not water soluble which create the necessity of different formulations in order to be solved in an appropriate media. Regarding the experimental part, extractions from saw palmetto berries were performed at various pressures and temperatures, which were higher than the ones that were applied in previous studies, in order to estimate and calculate different parameters (solubility, extraction kinetic curves, composition,…), and to compare different studies. Separation of xanthohumol was carried out in a homemade supercritical chromatography, which manageable variables were temperature, pressure, mass flow-rate, modifier, and stationary phase. The results were compared with those ones which were obtained using conventional techniques, in order to prove the suitability and the improvement of this technique against others tecniques.
Keywords: supercritical CO2, supercritical fluid extraction, supercritical fluid chromatography, xanthohumol, saw palmetto berries, Beta-Sitosterol, encapsulation
Published in DKUM: 13.07.2017; Views: 2015; Downloads: 243
.pdf Full text (3,20 MB)

5.
Process design for flavour encapsulation into carbohydrate melts using high pressure homogenizer
Urban Feguš, 2016, doctoral dissertation

Abstract: The aim of the research project was to develop encapsulated flavourings suitable for the final food applications such as chewing gums, instant teas and confectionary products. For this purpose that water soluble particles with particle size distribution 400-1500 µm and flavour loading up to 30 wt. % should be developed. In order to produce encapsulates with desired physical properties research work was divided into three project phases. The scope of Phase 1 was to select suitable carrier materials and to perform preliminary experiments using laboratory scale process set-up. Different carbohydrates (maltodextrin, simple sugars and sugar syrups) were tested and selected according to their physical characteristics and their process performance. Afterwards preliminary experiments were performed by using laboratory scale set-up. Observations were used for defining process parameters for the design and construction of the pilot plant. Phase 2 covered design and development of the pilot plant for flavour encapsulation while In Phase 3 different process parameters were tested. In the first part influence of the process parameters (processing temperature, homogenizing pressure, mass flow, temperature of the cooling media, retention time in the cooling media and ratio between cooling media and product) on the encapsulation efficiency was investigated. Experiments were performed according to the Design of Experiments (DoE) analysed using analysis of covariance (ANCOVA). Process temperature, pressure at second homogenization step and residence time in cooling media had significant effect on the encapsulation efficiency while pressure at first homogenizing step, mass flow, temperature of the cooling media and ratio between product and cooling media were nonsignificant. Increase in the process temperature (T>130 °C) resulted in paste-like product with increased moisture content up to 13,3 wt.% which was not suitable for further processing. On the other hand samples processed at lower temperature (T<130 °C) resulted in crystalline-like structure with low moisture content. Low flavour retention (<4,5 %) was observed within all samples. Results obtained by ANCOVA were used for further optimization of the process parameters (e.g. homogenizing pressure and the retention time in the cooling media). Maximum flavour load of 3,5 % was observed regardless the homogenizing pressure. Low encapsulation efficiency (η<35 %) was related to poor emulsion stability. Additionally, effect of expansion pressure on the particle size distribution was investigated. It was observed that particle size distribution was little affected by varying expansion pressure (nozzle diameter). All formulation showed similar particle size distribution in-between 40-440 µm. In the last section effect of the emulsifier, flavouring properties and carrier were studied. Emulsifiers with different HLB values were tested in order to increase encapsulation efficiency. Flavourings were selected on the basis of their composition (polarity and volatility). For the encapsulation experiments mentha arvensis oil, orange oil and compounded pineapple flavouring were used. As an alternative carrier material erythritol was used. Addition of emulsifier improved flavour retention for samples containing mentha arvensis oil, while no affect was observed within samples containing orange oil and pineapple flavouring due to the volatility and diffusion of active compounds from matrix to surrounding environment.
Keywords: encapsulation, carbohydrate melts, flavouring, high pressure homogenizer
Published in DKUM: 25.07.2016; Views: 2142; Downloads: 148
.pdf Full text (4,56 MB)

6.
The development of a new process for gentle drying, micronisation and formulation of a high viscous biopoymer
Christian Reibe, 2011, dissertation

Abstract: Biopolymers are characterised by their biodegradable behaviour in certain environments. Especially the development of natural biopolymers from renewable resources is gathering increasing interest in the scientific as well as in the industrial sectors . Since Biopolymers may be tailored to specific requirements, the encapsulation of pharmaceutical compounds or flavours in biopolymers would open wide avenues for the production of controlled- release systems. Most common mechanical pulverisation processes are milling and grinding. With these processes it is not possible to produce specific morphologies like foams or hollow spheres, but always splintered edges. Encapsulation is carried out by common precipitation techniques. Gelatine, as a widely applied biopolymer, represents one example of those substances of large interest, but it is difficult to process. Especially gelatines with high molecular mass are difficult or almost impossible to be pulverized by spray drying techniques, due to their high viscosity. In the frame of this research work, an integrated high-pressure spraying, drying and pulverization process for high viscous gelatine was developed, based on a combination of the water removing effects "Evaporation" and "Gas-solubility". The resulting products were dry, free-flowing gelatine powders, still exhibiting high molecular masses. Due to the new, gentle method of processing, a completely new gelatine product with unique properties was obtained. Even the encapsulation of edible oil in high ratios was found to be possible with this new process. The characterisation was carried out by standard methods for gelatine on the one hand side, and standard procedures for characterising powders on the other hand side. The developed process was patented under the identifier "WO 002009135601 A1".
Keywords: High Pressure Process, Supercritical Fluids, High molecular mass Gelatine, Micronisation, CO-2 - spray drying, Encapsulation, Gelatine Powder
Published in DKUM: 26.01.2011; Views: 3358; Downloads: 219
.pdf Full text (24,89 MB)

Search done in 0.2 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica