| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 30
First pagePrevious page123Next pageLast page
1.
UVEDBA CENTRALNEGA UPRAVLJANJA INFORMACIJSKIH SISTEMOV NA ZAVODU RTV SLOVENIJA
Gorazd Zakrajšek, 2010, undergraduate thesis

Abstract: Na RTV Slovenija je trenutno v uporabi strežniški sistem, ki temelji na Windows 2008 in platformi Exchange 2007. V domeni je 2500 uporabnikov z različnimi operacijskimi sistemi (Windows 2000, Windows XP in majhen delež Windows 7). Raznolikost okolja narekuje potrebo po uvedbi centralnega sistema za nadzor in distribucijo popravkov, popis strojne in programske opreme, distribucijo programske opreme ter avtomatizirano namestitev operacijskih sistemov. Z implementacijo orodja Microsoft System Center Configuration Manager Server (ConfigMgr) 2007 v okolje RTV Slovenija lahko zagotovimo večjo skladnost IT-okolja z zahtevami uporabnikov in poslovanja ter s tem izboljšajmo njegovo učinkovitost, razpoložljivost in varnost. Orodje System Center Configuration Manager je grajeno na ključnih Microsoftovih tehnologijah, kot so Microsoft Windows Server Update Services (WSUS), Windows Server Active Directory (AD), in Windows arhitekturi. Vse te tehnologije so že bile predhodno nameščene v okolje RTV Slovenija.
Keywords: ConfigMgr: System CenterConfiguration Manager 2007, MP: SMS Management Point, RP: SMS Reporting Point, DP: SMS Distribution Point
Published: 24.01.2011; Views: 1793; Downloads: 72
.pdf Full text (2,25 MB)

2.
Investigation of crack propagation scatter in a gear tooth's root
Stanislav Pehan, Janez Kramberger, Jože Flašker, Boštjan Zafošnik, 2008, original scientific article

Abstract: This paper describes the problem of determining crack initiation location and its influence on crack propagation in a gear tooth's root. Three different load positions on the gear tooth's flank were considered for this investigation of crack initiation and propagation. A special test device was used for the single tooth test. It can be concluded from the measurements thata crack can be initiated at very different locations in a tooth's root and then propagate along its own paths. A numerical investigation into a crack initiation's position and its influences on its propagation were carried out within the framework of linear fracture mechanics. The influence of a tooth's load position, the geometry of the tooth's root, and the influence of nonparallel load distribution on the tooth's flank were considered when investigating the crack initiation's position. Results show that linear fracture mechanics can be used for determining crack propagation, if better initial conditions for crack initiation are considered.
Keywords: fracture mechanics, crack initiation, experimental crack propagation, numerical crack propagation, crack location, gearbox, tooth root, load distribution, linear elastic fracture mechanics
Published: 01.06.2012; Views: 857; Downloads: 59
URL Link to full text

3.
Predicting stress distribution in cold-formed material with genetic programming
Miran Brezočnik, Leo Gusel, 2004, original scientific article

Abstract: In this paper we propose a genetic programming approach to predict radial stress distribution in cold-formed material. As an example, cylindrical specimens of copper alloy were forward extruded and analysed by the visioplasticity method. They were extruded with different coefficients of friction. The values of three independent variables (i.e., radial and axial position of measured stress node, and coefficient of friction) were collected after each extrusion. These variables influence the value of the dependent variable, i.e., radial stress. On the basis of training data set, various different prediction models for radial stress distribution were developed during simulated evolution. Accuracy of the best models was proved with the testing data set. The research showed that by proposed approach the precise prediction models can be developed; therefore, it is widely used also in other areas in metal-forming industry, where the experimental data on the process are known.
Keywords: metal forming, stress distribution, prediction, genetic programming, modelling
Published: 01.06.2012; Views: 1042; Downloads: 47
URL Link to full text

4.
Weakly coupled analysis of a blade in multiphase mixing vessel
Matej Vesenjak, Zoran Ren, Matjaž Hriberšek, 2004, short scientific article

Abstract: Two or more physical systems frequently interact with each other, where the independent solution of one system is impossible without a simultaneous solution of the others. An obvious coupled system is that of a dynamic fluid-structure interaction. š8đ In this paper a computational analysis of thefluid-structure interaction in a mixing vessel is presented. In mixing vessels the fluid can have a significant influence on the deformation of blades during mixing, depending on speed of mixing blades and fluid viscosity.For this purpose a computational weakly coupled analysis has been performed to determine the multiphase fluid influences on the mixing vessel structure. The multiphase fluid field in the mixing vessel was first analyzed with the computational fluid dynamics (CFD) code CFX. The results in the form of pressure were then applied to the blade model, which was the analysed with the structural code MSC.visualNastran forWindows, which is based on the finiteelement method (FEM).
Keywords: fluid mechanics, solid mechanics, coupled problems, computational analysis, two-phase fluid, mixing blade, pressure distribution, finite volume method, finite element method
Published: 01.06.2012; Views: 857; Downloads: 47
URL Link to full text

5.
6.
7.
8.
Dynamical and statistical properties of time-dependent one-dimensional nonlinear Hamilton systems
Dimitrios Andresas, 2015, doctoral dissertation

Abstract: We study the one-dimensional time-dependent Hamiltonian systems and their statistical behaviour, assuming the microcanonical ensemble of initial conditions and describing the evolution of the energy distribution in three characteristic cases: 1) parametric kick, which by definition means a discontinuous jump of a control parameter of the system, 2) linear driving, and 3) periodic driving. For the first case we specifically analyze the change of the adiabatic invariant (the canonical action) of the system under a parametric kick: A conjecture has been put forward by Papamikos and Robnik (2011) that the action at the mean energy always increases, which means, for the given statistical ensemble, that the Gibbs entropy in the mean increases (PR property). By means of a detailed rigorous analysis of a great number of case studies we show that the conjecture largely is satisfied, except if either the potential is not smooth enough (e.g. has discontinuous first derivative), or if the energy is too close to a stationary point of the potential (separatrix in the phase space). We formulate the conjecture in full generality, and perform the local theoretical analysis by introducing the ABR property. For the linear driving we study first 1D Hamilton systems with homogeneous power law potential and their statistical behaviour under monotonically increasing time-dependent function A(t) (prefactor of the potential). We used the nonlinear WKB-like method by Papamikos and Robnik J. Phys. A: Math. Theor., 44:315102, (2012) and following a previous work by Papamikos G and Robnik M J. Phys. A: Math. Theor., 45:015206, (2011) we specifically analyze the mean energy, the variance and the adiabatic invariant (action) of the system for large time t→∞. We also show analytically that the mean energy and the variance increase as powers of A(t), while the action oscillates and finally remains constant. By means of a number of detailed case studies we show that the theoretical prediction is correct. For the periodic driving cases we study the 1D periodic quartic oscillator and its statistical behaviour under periodic time-dependent function A(t) (prefactor of the potential). We compare the results for three different drivings, the periodic parametrically kicked case (discontinuous jumps of $A(t)$), the piecewise linear case (sawtooth), and the smooth case (harmonic). Considering the Floquet map and the energy distribution we perform careful numerical analysis using the 8th order symplectic integrator and present the phase portraits for each case, the evolution of the average energy and the distribution function of the final energies. In the case where we see a large region of chaos connected to infinity, we indeed find escape orbits going to infinity, meaning that the energy growth can be unbounded, and is typically exponential in time. The main results are published in two papers: Andresas, Batistić and Robnik Phys. Rev. E, 89:062927, (2014) and Andresas and Robnik J. Phys. A: Math. Theor., 47:355102, (2014).
Keywords: one-dimensional nonlinear Hamiltonian systems, adiabatic invariant, parametric kick, periodic driving, linear driving, energy distribution, WKB method, action
Published: 02.03.2015; Views: 1246; Downloads: 33
.pdf Full text (11,07 MB)

9.
10.
Search done in 0.25 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica