| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 19
First pagePrevious page12Next pageLast page
1.
Strojno učenje za podporo bolj učinkovitega postopka diagnoze bolezni
Jure Kučer, 2020, master's thesis

Abstract: Razširjenost trenda masovnega hranjenja podatkov na različnih področjih znanosti omogoča vse naprednejšo uporabo metod strojnega učenja za iskanje novega znanja. Magistrsko delo zajema predstavitev osnovnih konceptov in tehnik za obdelavo podatkov, obravnavo manjkajočih vrednosti in končno uporabo pri učenju popularnejših algoritmov strojnega učenja z namenom klasifikacije laboratorijskih meritev pacientov. Primerjani sta uspešnost klasifikacijskih modelov naivni Bayes, k-najbližjih sosedov, odločitveno drevo, metoda podpornih vektorjev, naključni gozd, nevronska mreža, Adaboost in Adabagg ter vpliv metod podvzorčenja, nadvzorčenja in SMOTE za balansiranje učnih podatkov. Implementiran je tudi grafični vmesnik za vnos meritev, klasifikacijo, pregled rezultatov in pomembnosti lastnosti.
Keywords: strojno učenje, diagnoza bolezni, klasifikacija, diabetes
Published: 04.01.2021; Views: 157; Downloads: 33
.pdf Full text (2,18 MB)

2.
Aplikacija android za pomoč bolnikom z diabetesom
Simon Muršič, 2018, undergraduate thesis

Abstract: V diplomskem delu smo najprej opisali bolezen diabetes in predstavili platformo Android. Nato smo pregledali uporabo in razširjenost aplikacij za zdravje ter njihovo deljenje v različnih segmentih. Ugotovili smo, da imajo aplikacije za nadzorovanje kroničnih bolezni največji tržni potencial. Zato smo se odločili, da izdelamo Android aplikacijo za pomoč bolnikom z diabetesom. V aplikacijo smo vključili funkcionalnosti, kot so beleženje obrokov, aktivnosti in krvnega sladkorja. Implementirali smo tudi nastavljanje opomnika za uporabo zdravil in obveščanje oseb po elektronski pošti.
Keywords: diabetes, Android, sladkorna bolezen, aplikacije za zdravje, mZdravje
Published: 16.07.2018; Views: 952; Downloads: 191
.pdf Full text (1,40 MB)

3.
Uravnotežena prehrana nosečnice z gestacijskim diabetesom
Nataša Zupanič, 2017, undergraduate thesis

Abstract: Izhodišča: Gestacijski diabetes je sodobna bolezen nosečnic. Vedno pogosteje se pojavlja pri nosečnicah, ki imajo povišano telesno težo in nezdrav življenjski slog. Pomembno je, da se nosečnice zavedajo vpliva gestacijskega diabetesa na svojega otroka. Zato je potrebno spremeniti življenjski slog. Prva sprememba v življenjskem slogu je uravnotežena zdrava prehrana. Namen diplomskega dela je predstaviti zdravo uravnoteženo prehrano nosečnice z gestacijskim diabetesom in vlogo medicinske sestre pri tem. Raziskovalne metode: V diplomskem delu smo uporabili deskriptivno metodo dela ter kvantitativno metodologijo raziskovanja. Za zbiranje podatkov smo kot raziskovalni inštrument uporabili anonimni anketni vprašalnik. V raziskavi je sodelovalo 50 nosečnic z gestacijskim diabetesom, ki so obiskovale diabetološko ambulanto. Rezultati: Analiza anketnih odgovorov je pokazala, da so anketiranke največ informacij o uravnoteženi prehrani nosečnice z gestacijskim diabetesom dobile od medicinske sestre. Odgovori na vprašanja, ki se nanašajo na raznolikost prehrane nam povedo, da več kot polovica vprašanih uživa sadje in zelenjavo vsak dvakrat na dan, polovica vprašanih anketirank je pozorna na kalorično vrednost živil in 38 % jih je pozornih na glikemični indeks živil. Iz podanih odgovorov je razvidno, da 18 % anketirank ne upošteva vseh navodil glede zdrave uravnotežene prehrane. Diskusija in zaključek: Medicinska sestra ima pomembno funkcijo pri poučevanju o zdravi uravnoteženi prehrani nosečnice z gestacijskim diabetesom. Vendar je z raziskavo ugotovljeno, da se kljub dovolj informacijam o zdravi uravnoteženi prehrani anketiranke ne držijo vseh navodil, kar lahko privede do težav v zdravju nosečnice in ploda. Zato je potrebno nosečnice z gestacijskim diabetesom kontinuirano osveščat o zdravi uravnoteženi prehrani.
Keywords: nosečnost, gestacijski diabetes, sladkorna bolezen, zdrava prehrana, medicinska sestra.
Published: 28.11.2017; Views: 1496; Downloads: 257
.pdf Full text (2,43 MB)

4.
Implementing quality indicators for diabetes and hypertension in family medicine in Slovenia
Zalika Klemenc-Ketiš, Igor Švab, Tonka Poplas-Susič, 2017, original scientific article

Abstract: Introduction: A new form of family practices was introduced in 2011 through a pilot project introducing nurse practitioners as members of team and determining a set of quality indicators. The aim of this article was to assess the quality of diabetes and hypertension management. Methods: We included all family medicine practices that were participating in the project in December 2015 (N=584). The following data were extracted from automatic electronic reports on quality indicators: gender and specialisation of the family physician, status (public servant/self-contracted), duration of participation in the project, region of Slovenia, the number of inhabitants covered by a family medicine practice, the name of IT provider, and levels of selected quality indicators. Results: Out of 584 family medicine practices that were included in this project at the end of 2015, 568 (97.3%) had complete data and could be included in this analysis. The highest values were observed for structure quality indicator (list of diabetics) and the lowest for process and outcome quality indicators. The values of the selected quality indicators were independently associated with the duration of participation in the project, some regions of Slovenia where practices were located, and some IT providers of the practices. Conclusion: First, the analysis of data on quality indicators for diabetes and hypertension in this primary care project pointed out the problems which are currently preventing higher quality of chronic patient management at the primary health care level.
Keywords: family practices, healthcare quality indicator, diabetes mellitus, hypertension, Slovenia
Published: 03.11.2017; Views: 749; Downloads: 272
.pdf Full text (424,82 KB)
This document has many files! More...

5.
Razvoj spletne aplikacije in napovednega modela za napoved nediagnosticirane sladkorne bolezni tipa 2
Andrej Fajfar, 2017, master's thesis

Abstract: V magistrski nalogi smo s pomočjo metode strojnega učenja »Random Forest« skušali napovedati stopnjo tveganja za nastanek sladkorne bolezni oz. verjetnost prisotnosti nediagnosticirane sladkorne bolezni na podlagi podatkov iz Slovenije. Za izbrano metodo smo določili optimalno število in vrsto spremenljivk za posamezni model. Za evalvacijo modela smo uporabili povprečno območje pod krivuljo (AUC), točnost in F-mero. Za model populacije s povečanim tveganjem smo dosegli povprečno AUC 0,823, točnost 0,824 in F-mero 0,804. V modelu za napoved nediagnostirane sladkorne bolezni smo dosegli povprečno AUC in točnost 0,749 in F-mero 0,654. Na podlagi podatkov smo pokazali, da je možno z veliko uspešnostjo določiti osebe z visokim tveganjem, ki predstavljajo preddiabetike in nediagnostirane diabetike oz. skupino s tveganjem za nastanek sladkorne bolezni tipa 2. Pokazali smo uporabo tehnik uravnoteženja odločitvenega razreda in rezultate primerjali z neuravnoteženim razredom. Uravnoteženje razreda zviša klasifikacijsko uspešnost modela. Rezultate smo primerjali z rezultati drugih znanstvenih objav in zasledili podobnost med rezultati. Tuje raziskave navajajo, da je klasifikator Random Forest najpogosteje izbran model, v primerjavi z drugimi modeli za napovedovanje kroničnih bolezni. S korelacijskim testom smo pokazali, da napovedna uspešnost modela ne korelira s številom dreves v ansamblu (p = 0,00015).
Keywords: strojno učenje, Random Forest, neuravnoteženi podatki, diabetes mellitus
Published: 19.10.2017; Views: 734; Downloads: 126
.pdf Full text (1,38 MB)

6.
SNAP-25b-deficiency increases insulin secretion and changes spatiotemporal profile of $Ca^{2+}$ oscillations in $\beta$ cell networks
Teresa Daraio, Lidija Križančić Bombek, Marko Gosak, Ismael Valladolid-Acebes, Maša Skelin, Essam Refai, Per-Olof Berggren, Kerstin Brismar, Marjan Rupnik, Christina Bark, 2017, original scientific article

Abstract: SNAP-25 is a protein of the core SNARE complex mediating stimulus-dependent release of insulin from pancreatic $\beta$ cells. The protein exists as two alternatively spliced isoforms, SNAP-25a and SNAP-25b, differing in 9 out of 206 amino acids, yet their specific roles in pancreatic $\beta$ cells remain unclear. We explored the effect of SNAP-25b-deficiency on glucose-stimulated insulin release in islets and found increased secretion both in vivo and in vitro. However, slow photo-release of caged $Ca^{2+}$ in $\beta$ cells within pancreatic slices showed no significant differences in $Ca^{2+}$-sensitivity, amplitude or rate of exocytosis between SNAP-25b-deficient and wild-type littermates. Therefore, we next investigated if $Ca^{2+}$ handling was affected in glucose-stimulated [beta] cells using intracellular $Ca^{2+}$-imaging and found premature activation and delayed termination of [$Ca^{2+}$] i elevations. These findings were accompanied by less synchronized $Ca^{2+}$-oscillations and hence more segregated functional $\beta$ cell networks in SNAP-25b-deficient mice. Islet gross morphology and architecture were maintained in mutant mice, although sex specific compensatory changes were observed. Thus, our study proposes that SNAP-25b in pancreatic [beta] cells, except for participating in the core SNARE complex, is necessary for accurate regulation of $Ca^{2+}$-dynamics.
Keywords: insulin secretion, pre-diabetes
Published: 23.08.2017; Views: 635; Downloads: 97
.pdf Full text (3,80 MB)
This document has many files! More...

7.
Evaluation of major online diabetes risk calculators and computerized predictive models
Gregor Štiglic, Majda Pajnkihar, 2015, original scientific article

Abstract: Classical paper-and-pencil based risk assessment questionnaires are often accompanied by the online versions of the questionnaire to reach a wider population. This study focuses on the loss, especially in risk estimation performance, that can be inflicted by direct transformation from the paper to online versions of risk estimation calculators by ignoring the possibilities of more complex and accurate calculations that can be performed using the online calculators. We empirically compare the risk estimation performance between four major diabetes risk calculators and two, more advanced, predictive models. National Health and Nutrition Examination Survey (NHANES) data from 1999%2012 was used to evaluate the performance of detecting diabetes and pre-diabetes. American Diabetes Association risk test achieved the best predictive performance in category of classical paper-and-pencil based tests with an Area Under the ROC Curve (AUC) of 0.699 for undiagnosed diabetes (0.662 for pre-diabetes) and 47% (47% for pre-diabetes) persons selected for screening. Our results demonstrate a significant difference in performance with additional benefits for a lower number of persons selected for screening when statistical methods are used. The best AUC overall was obtained in diabetes risk prediction using logistic regression with AUC of 0.775 (0.734) and an average 34% (48%) persons selected for screening. However, generalized boosted regression models might be a better option from the economical point of view as the number of selected persons for screening of 30% (47%) lies significantly lower for diabetes risk assessment in comparison to logistic regression (p < 0.001), with a significantly higher AUC (p < 0.001) of 0.774 (0.740) for the pre-diabetes group. Our results demonstrate a serious lack of predictive performance in four major online diabetes risk calculators. Therefore, one should take great care and consider optimizing the online versions of questionnaires that were primarily developed as classical paper questionnaires
Keywords: risk calculators, predictive models, diabetes
Published: 19.06.2017; Views: 756; Downloads: 370
.pdf Full text (797,74 KB)
This document has many files! More...

8.
Intracellular serotonin modulates insulin secretion from pancreatic ß-cells by protein serotonylation
Nils Paulmann, Maik Grohmann, Jörg-Peter Voigt, Bettina Bert, Jakob Vowinckel, Michael Bader, Maša Skelin, Marko Jevšek, Heidrun Fink, Marjan Rupnik, Diego Walther, 2009, original scientific article

Abstract: While serotonin (5-HT) co-localization with insulin in granules of pancreatic ß-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is stili unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/-) and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- ß-cells, which clearly showed that the secretory defect is downstream of Ca2+ -signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in ß-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic ß-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.
Keywords: insulin secretion, serotonin, insulin, glucose, diabetes mellitus, guanosine triphosphatase, exocytosis, pancreas
Published: 16.06.2017; Views: 897; Downloads: 106
.pdf Full text (774,75 KB)
This document has many files! More...

9.
Modelling of the risk factors and chronic diseases that influence the development of serious health complications
Maja Atanasijević-Kunc, Jože Drinovec, Simona Ručigaj, Aleš Mrhar, 2008, original scientific article

Abstract: Background: Some chronic diseases, like diabetes type 2 and hypertension, and risk factors, such as obesity, hypercholesterolemia, and smoking, are strongly correlated with the potential development of serious health complications that can threaten a patient's life or significantly influence the quality of life, while at the same time representing an enormous economic burden. Such complications include, for example, stroke, coronary heart disease, peripheralarterial vascular disease, end-stage renal disease and congestive heart failure. Methods: For a quantitative evaluation of the mentioned patient groups, the age distribution and an estimation of the treatment expenses a dynamic mathematical model was developed, where special attention was devoted to its structure, as it should enable the sequential construction and representation of different forms of data information. The model was realized in the Matlab program package with the Simulink Toolbox. Conclusions: A dynamic mathematical model is described that enables the observation of patients (in percentage terms) with diabetes type 2 and obesity, as well as those who smoke, have hypercholesterolemia and hypertension and all possible combinations of these problems, related to their age. Taking into account the Slovenian demographic data and annual treatment expenses, we were able to quantitatively evaluate these factors, not only in Slovenia but also in other developed regions where the demographic and economic situations are similar. It is also possible to extend the model to patients with serious complications, also taking into account the population dynamics, which is the goal of the next steps in our investigation. Regarding the presented results, it is estimated that from a group of a million people, those requiring treatment for diabetes type 2 cost as much as € 19.5 millions per year, since the treatment of one patient for one year is € 355. If all the sufferers requiring such treatment were located, as a consequence of more systematic medical examinations, an additional € 16 millions would be needed. In this group of one million people, as many as 40 % are expected to develop hypercholesterolemia, of which 26 % are diagnosed and treated adequately. The annual cost for the treatment of one patient is 313, which means that for a group of a million people the costs would be € 82 millions per year. An additional € 43.5 millions would be needed if all the sufferers with hypercholesterolemia were treated. Another chronic disease is hypertension. The annual cost for treating one patient is estimated to be € 271, and so for a group of a million people the treatment costs would be € 69.5 millions. If this were extended to include so far undiscovered sufferers with this chronic disease an additional € 14.5 millions would be needed.
Keywords: modelling, simulation, diabetes type 2, obesity, smoking, hypercholesterolemia, hypertension
Published: 28.03.2017; Views: 545; Downloads: 71
.pdf Full text (1,10 MB)
This document has many files! More...

10.
POMEN TELESNE AKTIVNOSTI PRI BOLNIKIH S SLADKORNO BOLEZNIJO
Martina Sajko, 2016, undergraduate thesis

Abstract: Sladkorna bolezen je ena izmed kroničnih bolezni, katere število bolnikov vsakodnevno narašča, kljub veliko informacij o bolezni, pa za enkrat še ne moremo preprečiti širjenja bolezni. Dejstvo je, da je telesna aktivnost pomembna za zdravje vseh ljudi. Namen diplomskega dela je predstaviti sladkorno bolezen in predstaviti pomen telesne aktivnost za bolnike s sladkorno boleznijo ter ugotoviti koliko so bolniki s sladkorno boleznijo telesno aktivni.
Keywords: Diabetes, Sladkorna bolezen, TIP 1, TIP 2, aktivnost, šport, gibanje, zdravje
Published: 01.09.2016; Views: 1598; Downloads: 202
.pdf Full text (615,33 KB)

Search done in 0.17 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica