| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Extraction of bioactive metabolites from Achillea millefolium L. with choline chloride based natural deep eutectic solvents: a study of the antioxidant and antimicrobial activity
Milena Ivanović, Dragana Grujić, Janez Cerar, Maša Islamčević Razboršek, Ljiljana Topalić-Trivunović, Aleksandar Savić, Drago Kočar, Mitja Kolar, 2022, original scientific article

Abstract: In this study, the extraction efficiency of natural deep eutectic solvents (NADES) based on choline chloride as a hydrogen bond acceptor (HBA) and five different hydrogen bond donors (HBD; lactic acid, 1,4-butanediol, 1,2-propanediol, fructose and urea) was evaluated for the first time for the isolation of valuable bioactive compounds from Achillea millefolium L. The phytochemical profiles of NADES extracts obtained after ultrasound-assisted extraction were evaluated both spectrophotometrically (total phenolic content (TPC) and antioxidant assays) and chromatographically (UHPLC-MS and HPLC-UV). The results were compared with those obtained with 80% ethanol, 80% methanol, and water. The highest TPC value was found in the lactic acid-based NADES (ChCl-LA), which correlated with the highest antioxidant activity determined by the FRAP analysis. On the other hand, the highest antiradical potential against ABTS$^{+•}$ was determined for urea-based NADES. Phenolic acids (chlorogenic acid and dicaffeoylquinic acid isomers), flavones (luteolin and apigenin), and their corresponding glucosides were determined as the dominant individual phenolic compounds in all extracts. The antibacterial and antifungal properties of the extracts obtained against four bacterial cultures and two yeasts were evaluated using two methods: the agar dilution method to obtain the minimum inhibitory concentration (MIC) and the minimum bactericidal or fungicidal concentration (MBC or MFC), and the disc diffusion method. ChCl-LA had the lowest MIC and MBC/MFC with respect to all microorganisms, with an MIC ranging from 0.05 mg mL$^{−1}$ to 0.8 mg mL$^{−1}$, while the water extract had the weakest inhibitory activity with MIC and MBC/MFC higher than 3.2 mg mL$^{−1}$.
Keywords: viskoznost, fenoli, antioksidanti, natural deep eutectic solvents (NADES), density and viscosity, yarrow, phenolic compounds, antioxidant activity, antimicrobial activity
Published in DKUM: 09.04.2025; Views: 0; Downloads: 7
URL Link to full text
This document has many files! More...

2.
Sustainable processing of materials using supercritical fluids : doktorska disertacija
Dragana Borjan, 2022, doctoral dissertation

Abstract: Supercritical fluids (SCFs) are powerful solvents with many unique properties. They have great potential for many processes, from extraction to chemical reactions and recycling. Accordingly, phase equilibrium data and thermodynamic and transport properties measurements in systems with a supercritical phase, as well as reliable and versatile mathematical models of the phase equilibrium thermodynamics, are needed for the process design and economic feasibility studies. The dissertation focuses on the benefits of supercritical fluid technology and consists of three main sections. The first section includes studies of the phase equilibria of the binary gas-alcohol and gas-urea derivatives. The influence of pressure and temperature on the system behaviour (solubility, viscosity, density, interfacial tension, melting point curve) was investigated. Most of the experiments were carried out with a high-pressure optical view cell, with minor modifications of the apparatus and measurement principle to determine mentioned thermodynamic and transport properties. The second part of the dissertation deals with the recovery of extracts from natural materials. Special interest is oriented towards supercritical fluid extracts, characterised by strong biological activities, especially antimicrobial and antioxidant properties. Supercritical fluid extraction has been performed on a semi-continuous apparatus (at pressures of 150 bar and 250 bar and temperatures of 313.15 K and 333.15 K for oregano extraction; and at pressures of 100 bar and 300 bar and temperatures of 313.15 K and 333.15 K for red beetroot extraction) and various methods such as the microdilution method and the DPPH method were used to determine antimicrobial and antioxidant activity. In the third part, an overview of different methods for recycling carbon fibre reinforced composites is given, including chemical recycling with supercritical fluids. This field has not been well explored, and the approach is relatively new but very interesting from a sustainable point of view. For an economically feasible process design, the thermodynamic and mass transfer data have to be determined. The principles of the future lab- and pilot-scale operations demand these supporting data be known. The results obtained in the frame of this study represent the high added value in the scientific field. They are essential to design and modify processes that yield products that cannot be achieved with conventional production processes.
Keywords: supercritical fluids, alcohols, urea, phase equilibria, viscosity, density, interfacial tension, modified capillary method, isolation methods, supercritical fluid extraction, pharmacological activity, carbon fiber reinforced composites, recycling techniques
Published in DKUM: 11.10.2022; Views: 1029; Downloads: 149
.pdf Full text (4,64 MB)

3.
Determination of pressure losses in hydraulic pipeline systems by considering temperature and pressure
Vladimir Savić, Darko Knežević, Darko Lovrec, Mitar Jocanović, Velibor Karanović, 2009, original scientific article

Abstract: Generally accepted methods for calculating pressure losses within flat pipelines, as presented in literature and used in praxis, are based on the Reynolds number, which considers the viscosity and density of fluid, internal pipe friction coefficient, pipe geometry, and oil circulation velocity. Such an approach contains serious inconsequentiality. Namely, only nominal values for viscosity and density are considered in the calculation, which differs substantially from real conditions. It often leads to inaccurate calculations of pressure losses. A numerical model has been developed within the work prescribed in the paper, which takes into account actual changes in density and viscosity under the current oil pressure and temperature in order to overcome the above weaknesses of standard calculation procedures. Such an approach is novel and provides new capacity for an accurate pressure drop analysis of advanced hydraulic systems.
Keywords: tlačne izgube, ravne cevi, viskoznost, gostota, temperatura, pressure loss, float pipelines, viscosity, density, temeprature
Published in DKUM: 11.08.2015; Views: 1478; Downloads: 86
URL Link to full text

4.
Thermodynamic and physical properties for high pressure process design
Maša Knez Marevci, 2014, doctoral dissertation

Abstract: The thesis is comprised of three main categories. The first part of dissertation covers investigations of phase equilibria of compounds from natural materials in conventional and also non conventional supercritical fluids. In details, the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion) is investigated, quantitative and qualitative analyses to evaluate and identify compounds contained after performing preliminary extraction experiments from different natural tissues are presented. The impact of operating parameters (pre-treatment of the raw material with SFE; different extraction solvents: propane, CO2, non conventional SCFs; different extraction temperatures and pressures) on extraction kinetics is observed. Following substances were taken into consideration: vanillins, caffeine, carnosoic acid extract and lecithin. Second part of dissertation covers studies of phase equilibria of the systems bio oil/gas, which is crucial in biorefinery process design. In this part of dissertation, which covers studies of phase equilibria of binary and ternary systems, the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion) for binary system bio oil/supercritical fluid (bio oil/CO2) and (bio oil/H2) was studied. Additionally, phase behaviour of ternary systems of (bio oil/diesel/CO2) and (bio oil/tail water/CO2) under the impact of pressure and/or temperature is observed. These data are of a high importance for bio refineries as an important part of necessary sustainable development. In recent years, studies on biodiesel synthesis have focused on development of process intensification technologies to resolve some of these issues. Fundamental data to design fractionation process of components of bio oil are crucial for an efficient hydrogenation process of bio oil. In the third part of dissertation observation of phase equilibria and determination of the parameters like diffusion coefficient, density and viscosity for the systems polymer/CO2 at elevated pressures is investigated. An overview of different methods applied to determine the parameters like diffusion coefficient, density and viscosity of the systems polymer (PEG)/CO2 at elevated pressures is offered. Observation of phase equilibria of the binary system PEG/CO2, determination of the impact of pressure and/or temperature on the system behaviour (miscibility, solubility, phase inversion), determination of thermodynamically and physically properties of the system with new applicative methods and finally, comparison of the results obtained by different methods is provided. The interfacial tension (IFT) at the (PEG)/CO2 interface has been determined by using an experimental technique developed to study the interfacial interactions of the liquids in equilibrium with gas in a glass-windowed equilibrium cell by the means of Capillary Rise (CR) method. Advantages and disadvantages of methods that were applied are exposed and discussed.
Keywords: phase equilibria, natural materials, conventional and non conventional supercritical fluids, extraction, bio oil, data for biorefinery process design, systems polymer (PEG)/CO2, diffusion coefficient, density, viscosity, surface tension, Capillary Rise (CR) method.
Published in DKUM: 28.10.2014; Views: 2968; Downloads: 413
.pdf Full text (4,46 MB)

Search done in 0.04 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica