| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 1 / 1
First pagePrevious page1Next pageLast page
Critical plane modelling of fatigue initiation under rolling and sliding contact
Matjaž Šraml, Jože Flašker, Iztok Potrč, 2004, original scientific article

Abstract: Contact fatigue is a phenomenon of important practical significance for engineering applications involving localized contacts, such as gears, rail wheel system and rolling bearings. The service lifetime of such components is related to damage, which results from the contact fatigue. The process in the material structure that causes this kind of failure is quite complicated. The aim of the present paper is to describe a contact fatigue initiation criterion, based on the critical plane approach for the general contact problem. On the basis of contact stress analysis with modified Hertzian boundary conditions, the loading cycle of characteristic material points in the contact area is determined. The Dang Van damage initiation criterion is based on the critical plane approach, which combines the largest allowable shearing and hydrostatic stresses (tensile and compressive), with an assumed elastic shakedown behaviour and it is used in this work. The material point of initial fatigue damage is then determined at the transition of the loading cycle stresses over the critical plane. The model assumed a homogeneous and elastic material model, without any imperfections or residual stresses, and elastic shakedown is considered. A proper determination of loading cycles and their characteristic values is of significance for contact fatigue initiation analysis. Finally, determination of the most critical material point on or under the contact surface and related number of loading cycles required for fatigue damage initiation is calculated with the strain-life (▫$epsilon$▫-N) method.
Keywords: machine elements, contact fatigue, crack initiation, strain life method, critical plane approach, numerical modeling
Published: 01.06.2012; Views: 1209; Downloads: 67
URL Link to full text

Search done in 0.01 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica