1. Experimental characterization and phase-field damage modeling of ductile fracture in AISI 316lVladimir Dunić, Nenad Gubeljak, Miroslav Živković, Vladimir Milovanović, Darko Jagarinec, Nenad Djordjevic, 2024, original scientific article Abstract: ) Modeling and characterization of ductile fracture in metals is still a challenging task in
the field of computational mechanics. Experimental testing offers specific responses in the form of
crack-mouth (CMOD) and crack-tip (CTOD) opening displacement related to applied force or crack
growth. The main aim of this paper is to develop a phase-field-based Finite Element Method (FEM)
implementation for modeling of ductile fracture in stainless steel. (2) A Phase-Field Damage Model
(PFDM) was coupled with von Mises plasticity and a work-densities-based criterion was employed,
with a threshold to propose a new relationship between critical fracture energy and critical total
strain value. In addition, the threshold value of potential internal energy—which controls damage
evolution—is defined from the critical fracture energy. (3) The material properties of AISI 316L steel
are determined by a uniaxial tensile test and the Compact Tension (CT) specimen crack growth test.
The PFDM model is validated against the experimental results obtained in the fracture toughness
characterization test, with the simulation results being within 8% of the experimental measurements. Keywords: phase-field damage modeling, ductile fracture, crack-tip opening displacement, crack growth, resistance curve, finite element method, simulations Published in DKUM: 19.09.2024; Views: 0; Downloads: 3 Full text (3,84 MB) This document has many files! More... |
2. Experimental study of crack propagation through cladded 316L/S355 steel produced by the hot-roll bonding processEdvard Bjelajac, Andrej Skumavc, Fidan Smaili, Gorazd Lojen, Jožef Predan, Tomaž Vuherer, 2023, original scientific article Abstract: A hot-rolled clad plate made of 316L stainless steel and S355 carbon steel was produced in a real industrial environment via GMAW welding, vacuuming, preheating to 1240 °C, and hot-roll bonding on four stand plate mills in nine passes with reduction rates between 20-6% per pass. The clad plates were solution annealed to achieve the usual delivery condition. Ultrasound testing showed a bonding rate of 100%. Metallographic examination revealed predominantly low concentrations of oxides at the interface. The tensile strength of the bond reached 155 MPa. The shear strength always satisfied the requirements of ASTM A264. It was observed that the concentration of oxide particles influenced the shear strength strongly. The lowest measured value was 172 MPa. Specimens notched in the base material and specimens notched in the clad layer were used in the Charpy impact test. In every case, only the notched layer broke, while the other layer was only bent. The absorbed energies were always higher than those of each material alone. Fracture mechanic tests gave similar results. The crack could not propagate from the notched layer into the other one, regardless of the material of the notched layer. Instead, delamination occurred. Due to delamination, K1c could not be determined, so KQ was given instead. Keywords: clad plate, hot-roll bonding, shear strength, tensile strength, impact toughness, crack propagation Published in DKUM: 28.03.2024; Views: 210; Downloads: 15 Full text (18,79 MB) This document has many files! More... |
3. Nonlinear semi-numeric and finite element analysis of three-point bending tests of notched polymer fiber-reinforced concrete prismsŽiga Unuk, Milan Kuhta, 2024, original scientific article Abstract: A nonlinear semi-numeric and finite element analysis of three-point bending tests of notched polymer fiber-reinforced concrete prisms was performed. The computational and experimental results were compared in terms of the load-displacement behavior. The vertical midspan displacement and the crack mouth opening displacement results were considered. The nonlinear semi-numeric computational procedure involved the moment-curvature relation, calculated by considering the constitutive material law from the fib Model Code for Concrete Structures 2010, and considered a plastic hinge mechanism to simulate the cracked region behavior. Two sets of tensile mechanical properties were considered for the constitutive material law: back-calculated (by an inverse analysis) tensile strength properties from the experimental results, and tensile strength properties calculated by simplified expressions from the fib Model Code for Concrete Structures 2010. Other mechanical properties were determined by additional compressive tests and standard relations for the dependency of various mechanical properties on the concrete compressive strength. The nonlinear finite element analysis incorporated the Menetrey-Willam material model to simulate the fiber-reinforced concrete behavior. The nonlinear semi-numeric analysis load-displacement results based on the back-calculated tensile strength properties relatively accurately matched with the experimental results, whereas the nonlinear semi-numeric analysis load-displacement results based on tensile strength properties calculated by simplified expressions from the fib Model Code for Concrete Structures 2010 and the nonlinear finite element analysis load-displacement results showed certain shortcomings. Keywords: polymer fiber-reinforced concrete, moment-curvature relation, nonlinear plastic hinge, load-displacement relation, crack width, nonlinear analysis, finite element analysis, Menetrey-Willam material model, three-point bending test, compressive test Published in DKUM: 19.02.2024; Views: 350; Downloads: 15 Full text (6,91 MB) This document has many files! More... |
4. Influence of microdefect on fatigue properties in weld fine grain heat affected zone on nickel molybdenum alloy steel : doctoral disertationFidan Smaili, 2023, doctoral dissertation Abstract: This research presents two possibilities to prepare and test the Fine Grain of a Heat Affected Zone, which, practically, could be considered as the weakest part of welded joints in the presence of any microdefect. It is a narrow zone located between the fusion zone and the unaffected base material; therefore, only a few methods are suitable to test its mechanical properties. The 18CrNiMo7-6 steel was used as the base material. As this steel is usually used for the production of dynamically loaded components, testing of its fatigue behaviour and fracture toughness was crucial, but also measurement of its hardness and impact toughness. To investigate the mechanical properties of a Fine-Grain Heat-Affected Zone (FG HAZ), two different methods for simulation of as-welded microstructures were used in this research: A weld thermal cycle simulator (WTCS) and austenitising in a laboratory furnace + Keywords: weld joint, Fine Grain Heat Affected Zone, mechanical properties, fatigue crack growth Published in DKUM: 06.10.2023; Views: 458; Downloads: 45 Full text (13,49 MB) |
5. Evolution of chemically induced cracks in alkali feldspar: thermodynamic analysisRainer Abart, Elena Petrishcheva, Gerlinde Habler, Christoph Sutter, Franz Dieter Fischer, Jožef Predan, Marko Kegl, Franz G. Rammerstorfer, 2022, original scientific article Abstract: A system of edge cracks was applied to polished (010) surfaces of K-rich gem-quality alkali feldspar by diffusion-mediated cation exchange between oriented feldspar plates and a Na-rich NaCl–KCl salt melt. The cation exchange produced a Na-rich layer at and beneath the specimen surface, and the associated strongly anisotropic lattice contraction lead to a tensile stress state at the specimen surface, which induced fracturing. Cation exchange along the newly formed crack flanks produced Na-enriched diffusion halos around the cracks, and the associated lattice contraction and tensile stress state caused continuous crack growth. The cracks nucleated with non-uniform spacing on the sample surface and quickly attained nearly uniform spacing below the surface by systematic turning along their early propagation paths. In places, conspicuous wavy cracks oscillating several times before attaining their final position between the neighboring cracks were produced. It is shown that the evolution of irregularly spaced towards regularly spaced cracks including the systematic turning and wavyness along the early propagation paths maximizes the rate of free energy dissipation in every evolutionary stage of the system. Maximization of the dissipation rate is suggested as a criterion for selection of the most probable evolution path for a system undergoing chemically induced diffusion mediated fracturing in an anisotropic homogeneous brittle material. Keywords: chemically induced fracturing, alkali feldspar, crack spacing, wavy cracks, dissipation rate, thermodynamic extremal principle Published in DKUM: 17.07.2023; Views: 299; Downloads: 25 Full text (2,79 MB) This document has many files! More... |
6. Fatigue crack initiation and propagation in lotus-type porous materialSrečko Glodež, Sašo Dervarič, Janez Kramberger, Matjaž Šraml, 2016, original scientific article Abstract: The investigation of fatigue strength of lotus-type structure with nodular cast iron as a base material using computational model is analysed in present study. The irregular pores distribution in transversal and longitudinal direction, regarding the external loading, is considered in the computational models. The complete fatigue process of analyzed porous structure is then divided into the crack initiation (Ni) and crack propagation (Np) period where the total fatigue life (N) is defined as: N = Ni + Np. The crack initiation period is determined using strain life approach where elastic-plastic numerical analysis is performed to obtain the total strain amplitude in the critical stress fields around the pores. The simplified universal slope method is then used to determine the number of stress cycles, Ni, required for formation of initial cracks. The number of stress cycles, Np, required for crack propagation from initial to the critical crack length is also numerically determined using finite element (FE) models, in the frame of Abaqus computation FEM code. The maximum tensile stress (MTS) criterion is considered when analyzing the crack path inside the porous structure. The performed computational analyses show that stress concentrations around individual pores are higher when external loading is acting in transversal direction in respect to the pore distribution. Therefore, further computational analyses regarding crack initiation and crack propagation period have been done only for pores distribution in transversal direction. Keywords: lotus-type porous structures, fatigue crack initiation, fatigue crack propagation, numerical analysis Published in DKUM: 02.08.2017; Views: 1467; Downloads: 415 Full text (4,75 MB) This document has many files! More... |
7. Compression pre-stress of tubular torsion springsVinko Močilnik, Nenad Gubeljak, Jožef Predan, Jože Flašker, 2010, original scientific article Abstract: This paper reports the results of a series of biaxial static compression and torsion experiments performed to evaluate the effects of static compression stress on the fatigue life of those smooth tubes made of high strength spring steel. The fatigue life of biaxial loaded springs depends, among others, on biaxial compression and torsion loading. A high shear loading ratio leads to low-cycle fatigue behaviour rather than high-cycle fatigue, because it was found that a crack was initiated at a local highly deformed area on surface of the specimen.The experimentally obtained results show a significant extension of fatigue strain life as a result of combining axial compression loading with torsion. Cracking behaviour was observed and it was noted that compression pre-stresses contribute to retardation of the fatigue crack initiation process and, consequently, contribute to the extension of fatigue life. Keywords: fatigue, fatigue life, micro crack, multi axial stress state, pre-stressing, torsion, torsion bar springs, twist angle Published in DKUM: 11.07.2017; Views: 1241; Downloads: 98 Full text (1,10 MB) This document has many files! More... |
8. Suitability of heat treatment for crack resistance of material in the connection part of heavy transporter for liquid slagTomaž Vuherer, Ljubica Milović, Milorad Zrilić, Ivan Samardžić, Vladimir Gliha, 2013, other scientific articles Abstract: The post weld heat treatment (PWHT) was used to reduce the level of the residual stresses and increase of the crack resistance of the materal in the cnnection part. The article presents the results of the residual stress measurements immediately after welding and after the stress relaxation by the PWHT. Keywords: weld, heat treatment, residual stress, stress relaxation, crack resistance Published in DKUM: 03.07.2017; Views: 2337; Downloads: 102 Full text (552,83 KB) This document has many files! More... |
9. Fatigue crack initiation from microstructurally small Vickers indentationsTomaž Vuherer, Andrej Godina, Zijah Burzić, Vladimir Gliha, 2007, original scientific article Abstract: The resistivity of coarse grain steel against crack initiation in the presence of micro defects is discussed. Samples of material with martensitic microstructure were prepared by adequate thermal treatment. Microstructurally small Vickers indentations were used as an artificial micro defect. The compressive residual stresses are due to the irreversibility of plastic deformation. The moment of indenting enables to prepare samples with and without effects of residual stresses. The stress level for crack initiation depends on the actual indentation size. The location of initiated cracks is affected by the presence and character of residual stresses. Keywords: welded joints, micro defect, coarse grain HAZ, crack initiation, crack growth, stress concentration, fatigue limit, Vickers, residual stresses Published in DKUM: 03.07.2017; Views: 1782; Downloads: 122 Full text (1,02 MB) This document has many files! More... |
10. Fatigue crack growth and fracture mechanics analysis of a working roll surface layer materialMatej Drobne, Tomaž Vuherer, Ivan Samardžić, Srečko Glodež, 2014, original scientific article Abstract: Fatigue crack growth and fracture mechanics analysis of a working roll surface layer material is presented in this paper. The research is done on a hot strip mill working roll where High Chromium Steel is used for roll’s shell material. To obtain corresponding parameters, a rectangular single edge notched bend specimens – SENB, according to standard BS 7448, were used. The fatigue crack growth analysis was done on a resonant testing machine with use of special crack gauges, while for fracture mechanics parameters the electro–mechanical testing machine was used. Keywords: fracture mechanics, fatigue crack growth, metal forming, rolling process, high chromium steel Published in DKUM: 03.07.2017; Views: 1310; Downloads: 127 Full text (1,11 MB) This document has many files! More... |