1.
Basic solutions on shape complexity evaluation of STL dataBogdan Valentan,
Tomaž Brajlih,
Igor Drstvenšek,
Jože Balič, 2008, original scientific article
Abstract: Purpose of this paper is to present basic solutions on shape complexity, based on basic information of the STL data. Design/methodology/approach: Paper presents a few methods of mathematically evaluating the complexity of the shape. Methods vary from very simple based on the number of triangles in STL file, STL file size and the parts volume, to the more complex mathematical evaluation based on the basic relations of the STL data. Findings: We discovered that evaluation of shape complexity based only on basic data of STL data gives us some basic results on part complexity and can be used for further researches. Research limitations/implications: For parts with large block volume/part volume ratio and thinner parts with free form surfaces only the first method is suitable and gives suitable results. Practical implications: In a rapidly developing field of manufacturing technologies choosing the optimal manufacturing procedure is a difficult and crucial decision. Usually the decision is based on experience evaluation that is fast and can be optimal. Usually, this method produces goods results, but in some cases this method can lead to cost increases and reduced economic efficiency without us even knowing that. Therefore, it is crucial, that a fast and simple solution is developed, by which the optimal way of manufacturing can be determined. Originality/value: Choosing maximum efficient manufacturing processes on base of part complexity is a new perspective in manufacturing, which, properly evolved and complied can cause revolution in manufacturing optimization, especially in hybrid manufacturing processes.
Keywords: manufacturing systems, shape complexity, complex shapes, manufacturing optimization, engineering design, STL files, STL file parameters
Published in DKUM: 01.06.2012; Views: 2098; Downloads: 67
Link to full text