| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 21
First pagePrevious page123Next pageLast page
1.
Comparison study of four commercial SARS-CoV-2-rapid antigen tests : characterisation of the individual components
Žiga Jelen, Ivan Anžel, Rebeka Rudolf, 2022, original scientific article

Abstract: During the corona virus (COVID-19) pandemic, there was a sharp increase in the need for diagnostic tests that could detect the presence of SARS-CoV-2 virus or its antibodies quickly and reliably. An important type in the group of diagnostic tests are rapid antigen lateral flow immuno-assay (LFIA) tests, which operate on the immuno-chromatographic principle with the lateral flow of analyte. Clinical practice in the last year has shown that such diagnostic tests can be effective in preventing the spread of the SARS-CoV-2 virus.The development, and, thus, the production of the rapid antigen LFIA tests, is influenced by a number of factors that determine their sensitivity and accuracy indirectly. These factors are directly dependent on the type of antibody produced, which is formed as an immune response when infected with the virus. The production of the rapid antigen LFIA tests is associated with the appropriate selection of basic components that determine the type and quality of these tests. The basic components include: substrates and membranes, antigens, antibody labels and compatible buffers. The correct choice of membranes and their materials is crucial to compiling an effective rapid antigen LFIA test. This study therefore presents a comparative analysis of four commercially available SARS-CoV-2-rapid LFIA tests using state-of-the-art characterisation techniques scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectrometry (ICP-OES), environmental scanning electron microscope / energy-dispersive X-ray spectroscopy (ESEM/EDX), Fourier-transform infrared spectroscopy / attenuated total reflection (FTIR/ATR) for the individual components. The obtained results were the starting point for the development and assembling of our own rapid antigen LFIA test based on gold nanoparticles as antibody labels.
Keywords: hitri antigenski testi, komponente, karakterizacija, analize, rapid antigen test, components, characterisation, analysis
Published in DKUM: 26.03.2025; Views: 0; Downloads: 1
URL Link to full text
This document has many files! More...

2.
Microstructure and indentation properties of single-roll and twin-roll casting of a quasicrystal-forming Al-Mn-Cu-Be alloy
Franc Zupanič, Matjaž Macerl, Toshio Haga, Tonica Bončina, 2022, original scientific article

Abstract: In this investigation, strips of an experimental Al-Mn-Cu-Be alloy were manufactured by high-speed single-roll and twin-roll casting to stimulate the formation of a quasicrystalline phase during solidification. The strips were characterised by light microscopy, scanning and transmission electron microscopy, microchemical analysis, and X-ray diffraction. Indentation testing was used to determine the mechanical responses of the strips in different areas. A smooth surface was achieved on both sides of the twin-roll-cast strip, while the free surface of the single-roll-cast strip was rough. The microstructures in both strips consisted of an Al-rich solid solution matrix embedding several intermetallic phases Θ-Al2Cu, Be4Al (Mn, Cu), Al15Mn3Be2 and icosahedral quasicrystalline phase (IQC). The microstructure of the single-roll-cast strip was more uniform than that of the twin-roll-cast strip. Coarse Al15Mn3Be2 particles appeared in both alloys, especially at the centre of the twinroll strip. These coarse particles adversely affected the strength and ductility. Nevertheless, both casting methods provided high-cooling rates, enabling the formation of metastable phases, such as quasicrystals. However, improvements in alloy composition and casting procedure are required to obtain enhanced microstructures and properties.
Keywords: single-roll casting, twin roll casting, microstructure, quasicrystal, hardness, aluminium, characterisation
Published in DKUM: 24.03.2025; Views: 0; Downloads: 0
.pdf Full text (10,68 MB)
This document has many files! More...

3.
Synthesis of Ni/Y2O3 nanocomposite through USP and lyophilisation for possible use as coating
Tilen Švarc, Srečko Stopić, Žiga Jelen, Matej Zadravec, Bernd Friedrich, Rebeka Rudolf, 2022, original scientific article

Abstract: The Ni/Y2O3 catalyst showed high catalytic activity. Based on this, the aim of this study was to create Ni/Y2O3 nanocomposites powder with two innovative technologies, Ultrasonic Spray Pyrolysis (USP) and lyophilisation. In the USP process, thermal decomposition of the generated aerosols in an N2/H2 reduction atmosphere caused a complete decomposition of the nickel (II) nitrate to elemental Ni, which became trapped on the formed Y2O3 nanoparticles. The Ni/Y2O3 nanocomposite particles were captured via gas washing in an aqueous solution of polyvinylpyrrolidone (PVP) in collection bottles. PVP was chosen for its ability to stabilise nano-suspensions and as an effective cryoprotectant. Consequently, there was no loss or agglomeration of Ni/Y2O3 nanocomposite material during the lyophilisation process. The Ni/Y2O3 nanocomposite powder was analysed using ICP-MS, SEM-EDX, and XPS, which showed the impact of different precursor concentrations on the final Ni/Y2O3 nanocomposite particle composition. In a final step, highly concentrated Ni/Y2O3 nanocomposite ink (Ni/Y2O3 > 0.140 g/mL) and test coatings from this ink were prepared by applying them on a white matte photo paper sheet. The reflection curve of the prepared Ni/Y2O3 nanocomposite coating showed a local maximum at 440 nm with a value of 39% reflection. Given that Ni is located on the surface of the Ni/Y2O3 nanocomposite in the elemental state and according to the identified properties, tests of the catalytic properties of this coating will be performed in the future.
Keywords: Ultrasonic Spray Pyrolysis (USP), lyophilisation, Ni/Y2O3 nanocomposite, characterisation, coatings
Published in DKUM: 20.03.2025; Views: 0; Downloads: 0
.pdf Full text (6,07 MB)
This document has many files! More...

4.
Oxidation behaviour of microstructurally highly metastable Ag-La alloy
Andraž Jug, Mihael Brunčko, Rebeka Rudolf, Ivan Anžel, 2022, original scientific article

Abstract: A new silver-based alloy with 2 wt.% of lanthanum (La) was studied as a potential candidate for electric contact material. The alloy was prepared by rapid solidification, performed by the melt spinning technique. Microstructural examination of the rapidly solidified ribbons revealed very fine grains of αAg and intermetallic Ag5La particles, which appear in the volume of the grains, as well as on the grain boundaries. Rapid solidification enabled high microstructural refinement and provided a suitable starting microstructure for the subsequent internal oxidation, resulting in fine submicronsized La2O3 oxide nanoparticle formation throughout the volume of the silver matrix (αAg). The resulting nanostructured Ag-La2O3 microstructure was characterised by high-resolution FESEM and STEM, both equipped with EDX. High-temperature internal oxidation of the rapidly solidified ribbons essentially changed the microstructure. Mostly homogeneously dispersed nano-sized La2O3 were formed within the grains, as well as on the grain boundaries. Three mechanisms of internal oxidation were identified: (i) the oxidation of La from the solid solution; (ii) partial dissolution of finer Ag5La particles before the internal oxidation front and oxidation of La from the solid solution; and (iii) direct oxidation of coarser Ag5La intermetallic particles.
Keywords: Ag-La alloy, rapid solidification, metastable microstructure, internal oxidation, characterisation, formation mechanism
Published in DKUM: 20.03.2025; Views: 0; Downloads: 0
.pdf Full text (21,67 MB)
This document has many files! More...

5.
6.
The influence of the rolling direction on the mechanical properties of the Al-Alloy EN AW-5454-D
Matjaž Balant, Tomaž Vuherer, Peter Majerič, Rebeka Rudolf, 2024, original scientific article

Abstract: A complementary characterisation of the Al-alloy EN AW-5454 was carried out, intended for obtaining the laser hybrid welding parameters of subassemblies in the automotive industry. The investigation included a microstructural examination and the determination of the alloy’s properties using several analytical methods (HV5 hardness measurement, tensile test, Charpy impact toughness, fracture mechanics analysis). Samples were prepared in the longitudinal and transverse directions of a cold-rolled sheet of EN AW-5454 with thicknesses of 3.5 mm and 4 mm. The measured hardness on the thinner sheet was 5% higher than on the thicker sheet. The tensile and yield strength were nominal, while the elongations were smaller by 2.2–3.2% for the longitudinal samples and by 2.7–13.7% for the transverse samples. The smaller deviations from the nominal values are for the thinner sheet metal. A precise topographical analysis showed the brittle fractures of the samples. The Charpy impact toughness results on the thicker plate showed a 20% greater work needed to break it in the longitudinal direction than in the transverse direction. With the thinner sheet metal, 40% greater work was needed. SEM (scanning electron microscope) analysis has shown that the intermetallic Al6(Mn,Fe) particles in the longitudinal samples were mostly intact, with evidence of tough areas on the upper part of the fracture, indicating a better toughness than the specimens in the transverse direction. More crushed intermetallic particles were observed at the fractures of the transverse samples, and their distribution appeared to be more oriented in the direction of rolling. Fracture mechanics SENB (single edge notch bending) tests and their analysis showed that the resistance of the material to crack propagation in the longitudinal sample was about 50% greater than that in the transverse sample. SEM analysis of the fractures showed that the state of the intermetallic particles in the fracture mechanics testing and the fracture mechanism differed from the one in the Charpy fractures.
Keywords: Al-alloy EN AW-5454, characterisation, microstructure, properties
Published in DKUM: 02.12.2024; Views: 0; Downloads: 5
.pdf Full text (3,23 MB)
This document has many files! More...

7.
Material analysis of the remains of a wooden chest from the 4th century and a proposal for its reconstruction
Rebeka Rudolf, Janez Slapnik, Rajko Bobovnik, 2023, original scientific article

Keywords: chest, brass tile, analysis, characterisation, reconstruction
Published in DKUM: 04.04.2024; Views: 157; Downloads: 19
.pdf Full text (2,79 MB)
This document has many files! More...

8.
Microstructure, mechanical properties and fatigue behaviour of a new high-strength aluminium alloy AA 6086
Franc Zupanič, Jernej Klemenc, Matej Steinacher, Srečko Glodež, 2023, original scientific article

Abstract: This study presents the comprehensive experimental investigation of the microstructure, mechanical and fatigue properties of a new high-strength aluminium alloy AA 6086, which was developed from a commercial aluminium alloy AA 6082. The new alloy possesses a higher content of Si, and, it also contains Cu and Zr. The alloy was characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment. Light microscopy, scanning and transmission electron microscopy with energy dispersive spectrometry were used to analyse the microstructure and the fractography of broken specimens. The quasi-static and fatigue tests were performed on the MTS Landmark 100 kN servo-hydraulic test machine, controlled with a mechanical extensometer with a 25 mm gauge length. The quasi-static strength of the analysed aluminium alloy AA 6086 was found to be significantly higher if compared to some other AA 6xxx alloys, while the ductility was kept almost the same. The experimental results of the comprehensive fatigue tests in a Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) regime showed a good fatigue resistance, and represent a good basis for engineering design applications of the newly developed aluminium alloy AA 6086.
Keywords: aluminijeve zlitine, karakterizacija materiala, utrujanje, eksperimentalno testiranje, statistično ovrednotenje, Aluminium Alloy AA 6086, material characterisation, fatigue behaviour, experimental testing, statistical evaluation
Published in DKUM: 02.04.2024; Views: 281; Downloads: 29
URL Link to full text
This document has many files! More...

9.
10.
Dynamic characterisation of novel three-dimensional axisymmetric chiral auxetic structure
Anja Mauko, Yunus Emre Yilmaz, Nejc Novak, Tomáš Doktor, Matej Vesenjak, Zoran Ren, 2024, original scientific article

Abstract: The study presents an extensive mechanical and computational characterisation of novel cellular metamaterial with axisymmetric chiral structure (ACS) at different strain rates. The Direct Impact Hopkinson Bar (DIHB) testing device was used for impact testing up to 21 m/s striker speed, which was insufficient to reach the shock deformation regime. Thus, using computational simulations to estimate the structure behaviour at high strain rates was necessary. Experimental and computational results showed that all ACS structures exhibit a nominal stress–strain relationship typical for cellular materials. As the loading conditions shifted to a dynamic regime, the micro–inertia effect became increasingly pronounced, leading to a corresponding rise in structure stiffness. The Poisson's ratio in all ACS increases gradually, making them superior to traditional cellular materials, which experience a sudden increase in Poisson's ratio during loading. Additionally, the study found that the structures exhibited a rise in the auxetic effect with an increase in strain rate, highlighting the benefits of axisymmetric structures in high-loading regimes. Overall, the obtained results provide valuable insights into the mechanical properties of ACS under different loading regimes and will contribute to further design improvements and the fabrication of novel ACS metamaterials.
Keywords: axisymmetric chiral structure, auxetic, chiral unit cell, impact testing, dynamic characterisation, finite element simulations
Published in DKUM: 15.02.2024; Views: 345; Downloads: 39
.pdf Full text (7,73 MB)
This document has many files! More...

Search done in 0.18 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica