| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 24
First pagePrevious page123Next pageLast page
Study of crosslinking efficiency of cotton cellulose by different physical-chemical methods and genetic programming
Olivera Šauperl, Miran Brezočnik, 2006, original scientific article

Abstract: We have investigated the crosslinking effect of unmercerized and mercerized cotton celluose crosslinked with different BTCA mass fractions in the impregnation bath. Crosslinking efficiency was analyzed using FT-IR spectroscopy, water retention capacity method, tensiometry and the methylene blue method. On the basis of the experimental data which was obtained with theseparate physical-chemical methods, different prediction models for crosslinking efficiency was developed. Modelling was taken out with the genetic programming method. Research shows good accordance of the experimentaldata with the genetic models.
Keywords: textile fibres, cotton, cellulose, crosslinking, FTIR spectroscopy, methylene blue method, water retention capacity, tensiometry, genetic programming
Published: 30.05.2012; Views: 1325; Downloads: 44
URL Link to full text

Evaluation of analytical methods for the determination of free formaldehyde on textile substrate
Bojana Vončina, Alenka Majcen Le Marechal, Darinka Brodnjak-Vončina, 2007, original scientific article

Abstract: Release of formaldehyde from durable press-treated fabrics is a problem for human health and safety because formaldehyde is suspected to be carcinogenic. The accuracy of the standard test method for the free formaldehyde determination, Japan Law 112, depends on the formaldehyde content of the sample. The detection of low formaldehyde contents is particularly important in fields, like children clothing, so the application of high-performance liquid chromatography was evaluated. The results obtained by the standard testmethod, Japan Law 112, where UV/Vis spectrometer was used, were compared with the results obtained by HPLC method in which separation was performed on an RP C18 column with water-methanol as a mobile phase. It was shown that the detection limit and limit of quantification were improved using the HPLC method.
Keywords: analizna kemija, formaldehid, določevanje formaldehida, celulozna vlakna, HPLC, UV/VIS, analytical chemistry, formaldehyde, determination of formaldehyde, cellulose fibres, HPLC, UV/VIS
Published: 31.05.2012; Views: 1769; Downloads: 67
URL Link to full text

Cellulose fibres functionalised by chitosan : characterization and application
Simona Strnad, Olivera Šauperl, Lidija Fras Zemljič, 2010, independent scientific component part or a chapter in a monograph

Keywords: cellulose fibers, medical applications, chitosan, antimicrobic properties
Published: 31.05.2012; Views: 1027; Downloads: 14
URL Link to full text

Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles
Tijana Ristić, Lidija Fras Zemljič, Monika Novak, Marjetka Kralj Kunčič, Silva Sonjak, Nina Gunde-Cimerman, Simona Strnad, 2011, independent scientific component part or a chapter in a monograph

Abstract: This chapter presents an overview of methods for cellulose fibres functionalization in order to introduce antimicrobial activity. In view the need for ecologically friendly textiles antimicrobial finishing is introduced, together with some strategies for the functionalization of fibres using biodegradable polysaccharides such as the use of chitosan. Additionally,the methods used for the microbiological testing of these fibres are discussed and the current disadvantages of these methods indicated. Moreover, a new strategy for a reliable methodology regarding the antimicrobial testing of oriented fibre-based polymers such as cellulose is discussed, which could also be useful within several other polymer industrial fields.
Keywords: anitmicrobial agents, medical textiles, cellulose fibres, microbiological test, antimicrobial efficiency
Published: 01.06.2012; Views: 1486; Downloads: 42
URL Link to full text

Analysis of the oxidation of cellulose fibres by titration and XPS
Lidija Fras Zemljič, Leena Sisko Johansson, Peer Stenius, Janne Laine, Karin Stana-Kleinschek, Volker Ribitsch, 2005, original scientific article

Abstract: The purpose of this study was to evaluate the effect of selective oxidation on the surface properties of cotton cellulose fibres. Four different methods to evaluate the accessibility, nature and content of ionisable acidic groups (charge) in the fibres were applied: potentiometric and conductometric titrations, polyelectrolyte adsorption and X-ray photoelectron spectroscopy (XPS). The results from this combination of methods show that two processes take place when the oxidation method is applied: elimination of low molecular mass non-cellulosic compounds and formation of new acidic groups in the cellulose chains. Which of these processes is predominating depends on oxidation time, but the first one is initially more important. Polyelectrolyte adsorption and XPS show that the surface concentration of acidic groups is considerably lower than the bulk concentration, i.e. during oxidation the content of carboxyl groups in the surface region decreases, while it increases in amorphous regions. The decrease is due to the dissolution of low molecular weight compounds; the increase is due to the formation of new acidic groups. The use of titration methods in combination with XPS appears to be a very useful tool for identification of the formation and distribution of ionic groups in cotton fibres and their surfaces.
Keywords: textile fibres, cotton fibres, cellulose fibres, oxidation, X-ray photoelectron spectroscopy, XPS, acid groups in fibres
Published: 01.06.2012; Views: 1382; Downloads: 71
URL Link to full text

The interaction ability of cellulosic materials as a function of fine structure and Helmholtz surface energy
Tatjana Kreže, Karin Stana-Kleinschek, Volker Ribitsch, Zdenka Peršin, Majda Sfiligoj-Smole, 2005, original scientific article

Abstract: Many chemical or physical modification processes significantly influence the accessibility of fiber forming polymers by causing structural changes. The wettability and sorption ability improvements of polymeric materials are major tasks during finishing processes. Different pre-treatment processes are used in order to improve the accessibility of dissociable groups, hydrophilicity, dyeability, and whiteness. These are usually alkaline purification, chemical bleaching and mercerization. In a previous paper we presented the data for structural characteristics (density, crystallinity index, molecular orientation, void volume, diameter and the specific inner surface of void, etc.) of untreated regenerated cellulose fibers (viscose, modal and lyocell) [41]. We now compare the influence of different pre-treatment processes on fiber structure and the accessibility of the chemical groups of these fibers. In order to improve the accessibility, two pre-treatment processes were used: chemical bleaching of fibers and tensionless alkali treatment. The influence of these pre-treatment processes on the structure parameters was evaluated using viscosity measurements (determination of polymerization degree (DIN 54 270)) and iodine sorption ability measurements according to the Schwertassek method (determination of crystallinity index) [13, 16]. The reactivity and accessibility in a polar environment was determined using tensiometry. Contact angles between the fibers and liquids of different polarities were determined using the powder contact angle method and calculated from a modified Washburn equation [26, 28]. The surface free (Helmholtz) energy of differently treated fibers was determined from the contact angle data using the Owens-Wendt-Raeble-Kaelble approximation [30, 33, 35]. The differences in the accessibility of raw and pre-treated regenerated cellulose fibers obtained using tensiometry are compared with the results of the conventional method used to determine moisture adsorption (DIN 54 351, DIN 53 802). In regard to raw fibers, viscose shows the most hydrophilic characteristic: adsorbs the highest amount of moisture, has the fastest penetration velocities (Fig. 6), the smallest contact angle, and the highest SFE (Fig. 8). Modal fibers have the largest contact angle, the lowest SFE, and they adsorb the smallest amount of water vapor. Pre-treatments increase the sorption ability and the surface free (Helmholtz) energy while they decrease the contact angle. This makes the material more accessible to water and chemicals used in the finishing processes although the crystallinity index increases. The main modification in polymer properties caused by the treatments is an increase in the fiber SFE caused by an increase of the fiber surfaces because of swelling in the alkaline medium (washing, slack-mercerization), and due to an increase of accessible OH- and COOH-groups (bleaching). This enables the formation of an increased number of hydrogen bridges between the water molecules and the OH- and COOH-groups. Our investigations confirm the results published earlier thatthe main property necessary for the proper sorption behavior of cellulose materials are the accessible, less ordered regions and not the degree of crystallinity.
Keywords: regenerated cellulose fibers, fiber pre-treatment, iodine sorption, cristallinity, tensiometry, contact angle, Helmholtz surface energy, water adsorption
Published: 01.06.2012; Views: 1758; Downloads: 43
URL Link to full text

Characterization of amino groups for cotton fibers coated with chitosan
Lidija Fras Zemljič, Simona Strnad, Olivera Šauperl, Karin Stana-Kleinschek, 2009, original scientific article

Abstract: The adsorption of chitosan onto cellulose cotton fibers introduces antimicrobial properties, mainly created by the amount and location of amino groups. Therefore, it is important to be able to analyze both parameters, especially in a heterogeneous system, namely cotton fibers coated with chitosan. In this research, three different analytical techniques were applied to determine amino groups of cotton fibers coated with chitosan. The number of positively charged groups was determined indirectly by the spectrophotometric method using Acid Orange 7 dye, and the use of polyelectrolyte titration. In addition, the chemical surface composition regarding non-modified, as well as modified cotton fibers (coated with chitosan), was investigated using X-ray Photoelectron Spectroscopy (XPS). The results from a combination of these methods show that chitosan treatment introduces more than 14 mmol/kg of accessible amino groups onto the cotton fibers. The results were in good agreement with the results of XPS. The use of spectrophotometric and titration methods in combination with XPS appears to be a very useful tool for identifying the formation of amino groups in modified cotton fibers and their surfaces.
Keywords: cotton, cellulose, oxidation, chitosan, amino-groups, titration, XPS
Published: 01.06.2012; Views: 1078; Downloads: 105
URL Link to full text

Topochemical modification of cotton fibres with carboxymethyl cellulose
Lidija Fras Zemljič, Peer Stenius, Janne Laine, Karin Stana-Kleinschek, 2008, original scientific article

Abstract: The research reported in this paper demonstrates that the capacity of cotton fibres to adsorb cationic surfactants as well as the rate of the adsorption process can be increased by adsorbing carboxymethyl cellulose (CMC) onto the fibre surfaces; in addition, the adsorption can be restricted to the fibre surface. CMC was deposited by means of adsorption from an aqueous solution. The adsorption of N-cetylpyridinium chloride (CPC) from an aqueous solution onto the CMC-modified fibres was measured using UVspectrometric determination of the surfactant concentration in the solution. Adsorption onto the cotton fibres was studied in a weakly basic environment (pH 8.5) where cotton fibres are negatively charged and the CPC ion is positively charged. Modification of the fibres by adsorption of CMC introduces new carboxyl groups onto the fibre surfaces, thereby increasing the adsorption capacity of the fibres for CPC. The initial rate of adsorption of CPC increased proportionally with the amountof charge; however, this rate slowed down at high degrees of coverage onfibres with a high charge. The adsorption of cationic surfactant to the anionic surface groups was stoichiometric, with no indication of multilayer oradmicelle formation. It was evident that the acidic group content of the fibres was the primary factor determining cationic surfactant adsorption to these fibres.
Keywords: textile fibres, cotton fibres, modification, carboxymethyl cellulose, acid groups, charge increase, conductiometric titration, phenol-sulphuric acid test, practical applications
Published: 01.06.2012; Views: 1127; Downloads: 71
URL Link to full text

X-ray study of pre-treated regenerated cellulose fibres
Majda Sfiligoj-Smole, Zdenka Peršin, Tatjana Kreže, Karin Stana-Kleinschek, Volker Ribitsch, Susanne Neumayer, 2003, original scientific article

Abstract: Regenerated cellulose fibres have had an important role to play in the man-made fibre field. The very special characteristics of different types of regenerated cellulose fibres, e.g. mechanical properties, sorption characteristics, and aesthetics were conditioned by the differences in their fine structure due to fibre formation processes. Additionally, the finishing processes could influence the fibre structure. A study was done of the crystalline structures of a solvent-spun cellulose fibre type (Lenzing Lyocell), made according to the NMMO process, and two conventional cellulosic fibre types, made by the viscose process (Lenzing Viscose and Lenzing Modal). The fibres were pre-treated (bleached and slack mercerised) and structural changes were followed by wide angle and small angle x-ray scattering (WAXS and SAXS), respectively. The periodical structure, determined by long spacing, was nearly the same in all the different types of fibres. A slight increase was observed after the treatment of viscose and modal fibres, but an unpronounced fall of a long period accompanied the pre-treatment of lyocell fibres. Some changes in crystallinity and crystalline orientation occurred due to the treatment conditions. The structural changes were correlated to the iodinesorption and mechanical properties.
Keywords: regenerated cellulose fibres, fibre structure, fibre properties, x-ray analysis, WAXS, SAXS, cellulose pre-treatment
Published: 01.06.2012; Views: 1276; Downloads: 51
URL Link to full text

Search done in 0.14 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica