| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 3 / 3
First pagePrevious page1Next pageLast page
2-local 3/4-competitive algorithm for multicoloring hexagonal graphs
Petra Šparl, Janez Žerovnik, 2005, original scientific article

Abstract: An important optimization problem in the design of cellular networks is to assign sets of frequencies to transmitters to avoid unacceptable interference.A cellular network is generally modeled as a subgraph of the infinite triangular lattice. Frequency assignment problem can be abstracted asa multicoloring problem on a weighted hexagonal graph, where the weights represent the number of calls to be assigned at vertices. In this paper we present a distributed algorithm for multicoloring hexagonal graphs using only the local clique numbers ▫$omega_1(v)$▫ and ▫$omega_2(v)$▫ at each vertex v of the given hexagonal graph, which can be computed from local information available at thevertex. We prove the algorithm uses no more than ▫$4omega(G)/3$▫ colors for any hexagonal graph G, without explicitly computing the global clique number ▫$omega(G)$▫. We also prove that our algorithm is 2-local, i.e., the computation at a vertex v ▫$in$▫ G uses only information about the demands of vertices whose graph distance from v is less than or equal to 2.
Keywords: mathematics, graph theory, graph colouring, 2-local distributed algorithm, cellular networks, frequency planning
Published: 01.06.2012; Views: 1242; Downloads: 52
URL Link to full text

Encyclopedia of complexity and systems science
dictionary, encyclopaedia, lexicon, manual, atlas, map

Abstract: Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.
Keywords: cellular automata, complex networks, computational nanoscience, ecological complexity, ergodic theory, fractals, game theory, granular computing, graph theory, intelligent systems, perturbation theory, quantum information science, system dynamics, traffic management, chaos, climate modelling, complex systems, dynamical sistems, fuzzy theory systems, nonlinear systems, soft computing, stochastic processes, synergetics, self-organization, systems biology, systems science
Published: 01.06.2012; Views: 1464; Downloads: 61
URL Link to full text

Simpler multicoloring of triangle-free hexagonal graphs
Ignasi Sau Walls, Petra Šparl, Janez Žerovnik, 2012, published scientific conference contribution

Abstract: Preslikavo ▫$f colon V(G)to 2^{{1,.,n}}$▫, za katero velja ▫$|f(v)| ge p(v)$▫ za vsako točko ▫$v in V(G)$▫ in ▫$f(v) cap f(u) = emptyset$▫ za poljubni sosedi ▫$u$▫ in ▫$v$▫ grafa ▫$G$▫, imenujemo dobro ▫$n-[p]$▫barvanje grafa ▫$G$▫. Najmanjše naravno število, za katero obstaja dobro ▫$n-[p]$▫barvanje grafa ▫$G$▫, ▫$chi_p(G)$▫, imenujemo uteženo kromatično število grafa ▫$G$▫. Iskanje uteženega kromatičnega števila za inducirane podgrafe trikotniške mreže (imenovane heksagonalni grafi) ima aplikacije v celičnih mrežah. Uteženo kromatično število grafa ▫$G$▫, ▫$omega_p(G)$▫, je enako maksimalni uteži klike grafa ▫$G$▫, kjer utež klike predstavlja vsoto uteži njenih točk. McDiarmid in Reed (2000) sta postavila domnevo, da za poljuben heksagonalen graf brez trikotnikov velja ▫$chi_p(G) le (9/8)omega_p(G) + C$▫. V članku je podan algoritem, ki poda dobro ▫$7-[3]$▫barvanje poljubnega heksagonalnega grafa brez trikotnikov, ki aplicira neenakost ▫$chi_p(G) le (7/6)omega_p(G) + C$▫. Naš rezultat podaja krajšo alternativo induktivnega dokaza Haveta (2001) in izboljša kratek dokaz Sudepa in Vishwanathana (2005), ki sta dokazala obstoj ▫$14-[6]$▫barvanja. (Omeniti je potrebno, da v sklopu našega dokaza uporabimo izrek o štirih barvah.) Vsi koraki algoritma so linearni glede na ▫$|V(G)|$▫, razen 4-barvanje ravninskega grafa. Novi pristop lahko v prihodnje pripomore k dokazovanju domneve McDiarmida in Reeda (2000).
Keywords: matematika, teorija grafov, aproksimacijski algoritem, barvanje grafov, dodeljevanje frekvenc, celične mreže, mathematics, graph algorithm, graph theory, approximation algorithm, graph coloring, frequency planning, cellular networks
Published: 10.07.2015; Views: 366; Downloads: 40
URL Link to full text

Search done in 0.08 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica