SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Membrane potential and calcium dynamics in beta cells from mouse pancreas tissue slices
Marjan Rupnik, Andraž Stožer, Jurij Dolenšek, Borut Žalik, Maša Skelin, Marko Gosak, Denis Špelič, 2015, review article

Abstract: Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.
Keywords: calcium sensors, membrane potential sensors, calcium imaging, membrane potential imaging, beta cell, pancreas, denoising, patch-clamp
Published: 22.06.2017; Views: 186; Downloads: 22
.pdf Full text (4,17 MB)

2.
Critical and supercritical spatiotemporal calcium dynamics in beta cells
Marko Gosak, Andraž Stožer, Rene Markovič, Jurij Dolenšek, Matjaž Perc, Marjan Rupnik, Marko Marhl, 2017, original scientific article

Abstract: A coordinated functioning of beta cells within pancreatic islets is mediated by oscillatory membrane depolarization and subsequent changes in cytoplasmic calcium concentration. While gap junctions allow for intraislet information exchange, beta cells within islets form complex syncytia that are intrinsically nonlinear and highly heterogeneous. To study spatiotemporal calcium dynamics within these syncytia, we make use of computational modeling and confocal high-speed functional multicellular imaging. We show that model predictions are in good agreement with experimental data, especially if a high degree of heterogeneity in the intercellular coupling term is assumed. In particular, during the first few minutes after stimulation, the probability distribution of calcium wave sizes is characterized by a power law, thus indicating critical behavior. After this period, the dynamics changes qualitatively such that the number of global intercellular calcium events increases to the point where the behavior becomes supercritical. To better mimic normal in vivo conditions, we compare the described behavior during supraphysiological non-oscillatory stimulation with the behavior during exposure to a slightly lower and oscillatory glucose challenge. In the case of this protocol, we observe only critical behavior in both experiment and model. Our results indicate that the loss of oscillatory changes, along with the rise in plasma glucose observed in diabetes, could be associated with a switch to supercritical calcium dynamics and loss of beta cell functionality.
Keywords: beta cells, islets of Langerhans, self-organized criticality, intercellular dynamics, calcium waves, glucose oscillations, computational model, confocal calcium imaging
Published: 23.01.2018; Views: 164; Downloads: 24
.pdf Full text (3,43 MB)

Search done in 0.01 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica