3.
Steiner intervals, geodesic intervals, and betweennessBoštjan Brešar,
Manoj Changat,
Joseph Mathews,
Iztok Peterin,
Prasanth G. Narasimha-Shenoi,
Aleksandra Tepeh, 2009, original scientific article
Abstract: Koncept ▫$k$▫-Steinerjevih intervalov naravno posplošuje geodetske (binarne) intervale. Definiran je kot preslikava ▫$S: Vtimes cdots times V longrightarrow 2^V$▫, kjer je ▫$S(u_1, dots ,u_k)$▫ množica tistih vozlišč grafa ▫$G$▫, ki ležijo na kakem Steinerjevem drevesu glede na multimnožico ▫$W = {u_1, dots ,u_k}$▫ vozlišč iz ▫$G$▫. V tem članku za vsako naravno število ▫$k$▫ dokažemo karakterizacijo razreda tistih grafov, v katerih imajo vsi ▫$k$▫-Steinerjevi intervali t.i. lastnost unije, ki pravi, da ▫$S(u_1,ldots, u_k)$▫ sovpada z unijo geodetskih intervalov ▫$I(u_i,u_j)$▫ med vsemi pari vozlišč iz ▫$W$▫. Izkaže se, da tedaj, ko je ▫$k>3$▫, ta razred sovpada z razredom grafov, v katerih ▫$k$▫-Steinerjev interval zadošča aksiomu monotonosti(m), kot tudi z razredom grafov, v katerih ▫$k$▫-Steinerjev interval zadošča aksiomu (b2), ki sta pogoja iz teorije vmesnosti. In sicer preslikava ▫$S$▫ zadošča aksiomu (m), če iz ▫$x_1, dots ,x_k in S(u_1, dots ,u_k)$▫ sledi ▫$S(x_1, dots ,x_k) subseteq S(u_1, dots ,u_k)$▫; ter ▫$S$▫ zadošča (b2), če iz ▫$x in S(u_1,u_2, dots ,u_k)$▫ sledi ▫$S(x,u_2, dots ,u_k) subseteq S(u_1, dots ,u_k)$▫. V primeru ▫$k=3$▫ so ti trije razredi grafov različni in za razreda grafov, v katerih Steinerjev interval zadošča lastnosti unije oz. aksiomu monotonosti (m), dokažemo strukturni karakterizaciji. Prav tako predstavimo več delnih ugotovitev za razred grafov, v katerih 3-Steinerjev interval zadošča aksimu (b2), ki vodijo do domneve, da so to natanko tisti grafi, v katerih je vsak blok geodetski graf z diametrom 2.
Keywords: matematika, teorija grafov, Steinerjev interval, geodetski interval, razdalja, vmesnost, monotonost, bločni graf, mathematics, graph theory, Steiner interval, geodesic interval, distance, betweenness, monotonicity, block graph
Published in DKUM: 10.07.2015; Views: 1165; Downloads: 94
Link to full text