1. Software based encoder/decoder generation for data exchange optimization in the internet of things : master's thesisTjaž Vračko, 2022, master's thesis Abstract: Efficient encoding of data is an important part of projects in
the Internet of Things space. Communication packets must be kept
as small as possible in order to minimize the power consumption of
devices.
In this thesis, an automatic code generation tool, irpack, is proposed
that will unify the way packets are defined across all future
projects at Institute IRNAS.
Using a schema, this tool generates source code of encoders and
decoders in target programming languages. A schema evolution system
is also defined, by which changes to packets can be compatible
across multiple versions.
The tool is then applied to a selection of past projects to gauge
its usefulness. It is determined that irpack is able to encode the same
data into a similar or smaller size packet, while also providing
additional versioning information. Keywords: encoding/decoding, schema, schema evolution, bit packing, code generation Published in DKUM: 31.01.2022; Views: 370; Downloads: 53
Full text (2,58 MB) |
2. Some results on total domination in direct products of graphsPaul Dorbec, Sylvain Gravier, Sandi Klavžar, Simon Špacapan, original scientific article Abstract: Upper and lower bounds on the total domination number of the direct product ofgraphs are given. The bounds involve the ▫$\{2\}$▫-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The domination number of direct products of graphs is also bounded from below. Keywords: mathematics, graph theory, direktni produkt, total domination, ▫$k$▫-tuple domination, open packing, domination Published in DKUM: 31.03.2017; Views: 899; Downloads: 371
Full text (156,67 KB) This document has many files! More... |
3. On the packing chromatic number of Cartesian products, hexagonal lattice, and treesBoštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2007, original scientific article Abstract: Pakirno kromatično število ▫$chi_{rho}(G)$▫ grafa ▫$G$▫ je najmanjše število ▫$k$▫, tako da lahko množico vozlišč grafa ▫$G$▫ razbijemo v pakiranja s paroma različnimi širinami. Dobljenih je več spodnjih in zgornjih meja za pakirno kromatično število kartezičnega produkta grafov. Dokazano je, da pakirno kromatično število šestkotniške mreže leži med 6 in 8. Optimalne spodnje in zgornje meje so dokazane za subdividirane grafe. Obravnavana so tudi drevesa ter vpeljana monotona barvanja. Keywords: matematika, teorija grafov, pakirno kromatično število, kartezični produkt grafov, šestkotniška mreža, subdividiran graf, drevo, računska zahtevnost, mathematics, graph theory, packing chromatic number, Cartesian product of graphs, hexagonal lattice, subdivision graph, tree, computational complexity Published in DKUM: 10.07.2015; Views: 963; Downloads: 98
Link to full text |
4. |
5. |