| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Forward osmosis in wastewater treatment processes
Jasmina Korenak, Subhankar Basu, Malini Balakrishnan, Claus Hélix-Nielsen, Irena Petrinić, 2017, original scientific article

Abstract: In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.
Keywords: wastewater treatment, biomimetic membranes, desalination, draw solutions, forward osmosis
Published in DKUM: 18.08.2017; Views: 1533; Downloads: 431
.pdf Full text (403,57 KB)
This document has many files! More...

2.
Challenges in commercializing biomimetic membranes
Mark Edward Perry, Steen Ulrik Madsen, Tine Jørgensen, Sylvia Braekevelt, Karsten Lauritzen, Claus Hélix-Nielsen, 2015, review article

Abstract: The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market%in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.
Keywords: aquaporin membranes, biomimetic, commercialization, early stage technology
Published in DKUM: 21.06.2017; Views: 1519; Downloads: 342
.pdf Full text (239,48 KB)
This document has many files! More...

3.
Aquaporin-based biomimetic polymeric membranes
Joachim Habel, Michael R. Hansen, Søren Kynde, Nanna Larsen, Søren Roi Midtgaard, Grethe Vestergaard Jensen, Julie Bomholt, Anayo Ogbonna, Kristoffer Almdal, Alexander Schulz, Claus Hélix-Nielsen, 2015, review article

Abstract: In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.
Keywords: aquaporins, biomimetic membranes, block copolymers, proteopolymersomes, polyhedral oligomeric silsesquioxanes, polyamide layer, microfluidics, membrane proteins, protein-polymer-interactions
Published in DKUM: 21.06.2017; Views: 2409; Downloads: 170
.pdf Full text (10,59 MB)
This document has many files! More...

Search done in 0.11 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica