| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 2 / 2
First pagePrevious page1Next pageLast page
Hydrothermal processes for conversion of lignocellulosic biomass to value-added compounds
Tanja Milovanović, 2020, doctoral dissertation

Abstract: In this doctorial dissertation subcritical water processes of lignocellulosic biomass to obtain value-added compounds are studied. The doctorial dissertation is divided into four main parts. In the first and second part of dissertation, model compounds (standards of cellulose and sugars and chestnut tannins) were primarly used in order to better understand processes of real biomass material. The degradation of cellulose and different sugars was performed in batch reactor with subcritical water. The different reaction temperatures and times were used. The main phases, such as water-soluble fraction, acetone-soluble fraction and solid residue were separated and analysed. The analysis of water-soluble phase was done by HPLC equipped with UV and RI detector, while acetone-soluble phase of cellulose was analysed by GC-MS. Total sugar content was determined by the phenol-sulphuric acid colorimetric method. The properties of char, obtained using cellulose as a treated material, such as: specific surface area, pore volume and pore diameter were determined by gas adsorption method. A water-soluble phase mainly consists of sugar monomers and monomer degradation products such as 5-hydroxymethylfurfural (5-HMF), furfural, erythrose, sorbitol, 1,6-anhydroglucose, glycolaldehyde, glycerlaldehyde, 1,3-dihydroxyacetone, pyruvaldehyde, formic, levulinic, lactic, oxalic and succinic acids, while acetone-soluble phase, referred to also as bio-oil, consists of furans, phenols, carboxylic acids, aldehydes, ketones and high molecular compounds. The reaction mechanism of cellulose and sugars in subcritical water has been proposed based on the obtained results. Furthermore, the results from cellulose and sugar hydrothermal degradation were utilized in further work to determine which industrially interesting products could be obtained by hydrothermal processing of paper waste in subcritical water. The optimum conditions ( temperature and reaction time), which gave us the highest yield of base chemicals (furfural, 5-HMF, levulinic acid) were determined. Sweet chestnut (Castanea Sativa) bark contains high level of tannins and various phenolic compounds which can be utilized in pharmaceutical, cosmetic, nutritional and medical purposes. The sweet chestnut tannins extract and sweet chestnut bark were used as materials highly rich in bioactive compounds for subcritical water processes which are presented in the second part of doctorial dissertation, respectively. The spectrophotometric methods were used to determine total tannins, phenols and carbohydrates content and antioxidant activity. The identified compounds were ellagic and gallic acid, ellagitannins (vescalagin, castalagin, 1-o-galloyl castalagin, vescalin and castalin), sugars (maltose, glucose, fructose and arabinose) and sugar derivatives (5-HMF, furfural and levulinic acid). The results obtained from hydrothermal hydrolysis were compared to results from acid hydrolysis. Finally, the optimization of reaction parameters of subcritical water processes has been done aiming to obtain the product highly rich in ellagic acid. Subcritical water extraction of horse chestnut (Aesculus hippocastanum) parts such as seeds, seed shell, bark and leaves was described in the third chapter of dissertation. The detected compounds in extracts, such as escins, esculin, fraxin, phenolic compounds (chlorogenic, neochlorogenic and gallic acids) and furfurals (5-hydroxymethyfurfural, furfural, and methylfufrual) are quantified using HPLC. The last part of dissertation proposes extraction of cocoa shell using green technologies (supercritical CO2 and subcritical water extraction) and also conventional methods (Soxhlet extraction with hexane and extraction with 50 % acetone) to obtain bioactive compounds in order to compare the results. The detected compouns were methylxanthines, phenolic compounds, sugars, fatty acids.
Keywords: Subcritical water, biomass, biowaste, extraction, hydrothermal degradation, hydrolysis, bioactive compounds.
Published: 16.10.2020; Views: 323; Downloads: 55
.pdf Full text (6,32 MB)

Jana Simonovska, 2016, doctoral dissertation

Abstract: Pepper (Capsicum annuum L.) as widely distributed vegetable crop in the world is an excellent source of nutritive and biologically active compounds. The characteristic compounds, capsaicinoids and carotenoids, highlight the importance of the red hot pepper varieties and their oleoresin extracts in the food and pharmaceutical industry. In the Ph.D. thesis was studied the possibility for a separate and integral utilization of the red hot pepper for obtaining the oleoresins from pericarp, placenta, seeds and stalk. Pre-treatment of the raw material (drying, separation of anatomical structures i.e. pericarp, placenta and seeds, and determination of theirs physico-chemical characteristics and determination of the he characteristic bioactive compounds: capsaicinoids, carotenoids and volatiles was studied, also. The second part of the Ph.D. thesis was focused of the determination of the optimal conditions for isolation of the bioactive capsaicinoids and coloured compounds, through comparative following of the thermodynamical parameters by application of organic solvents and supercritical fluids. Influence of the working parameters: temperature, time, pressure, solid to liquid phase ratio, density, type of solvents, and particle size of raw material on the yield of extract and content of capsaicinoids, colour compounds and volatiles was studied. Modelling of the experimental phase data by application of mathematical methods was performed. Re-utilization of seed and stalk from red hot pepper in form of extracts for development of new formulations as edible films, biopesticides and nanoemulsions was studied, also.
Keywords: red hot pepper, pericarp, placenta, seed, stalk, extraction, sub- and supercritical fluids, bioactive compounds, volatiles, re-utilization, edible films, biopesticides, nanoemulsions
Published: 08.11.2016; Views: 1140; Downloads: 95
.pdf Full text (4,71 MB)

Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica