| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Fluctuating number of energy levels in mixed-type lemon billiards
Črt Lozej, Dragan Lukman, Marko Robnik, 2021, original scientific article

Abstract: In this paper, the fluctuation properties of the number of energy levels (mode fluctuation) are studied in the mixed-type lemon billiards at high lying energies. The boundary of the lemon billiards is defined by the intersection of two circles of equal unit radius with the distance 2B between the centers, as introduced by Heller and Tomsovic. In this paper, the case of two billiards, defined by B = 0.1953, 0.083, is studied. It is shown that the fluctuation of the number of energy levels follows the Gaussian distribution quite accurately, even though the relative fraction of the chaotic part of the phase space is only 0.28 and 0.16, respectively. The theoretical description of spectral fluctuations in the Berry-Robnik picture is discussed. Also, the (golden mean) integrable rectangular billiard is studied and an almost Gaussian distribution is obtained, in contrast to theory expectations. However, the variance as a function of energy, E, behaves as - E, in agreement with the theoretical prediction by Steiner.
Keywords: nonlinear dynamics, quantum chaos, mixed-type systems, energy level statistics, lemon billiards, billiards
Published in DKUM: 13.10.2023; Views: 518; Downloads: 19
.pdf Full text (1,40 MB)
This document has many files! More...

2.
Phenomenology of quantum eigenstates in mixed-type systems: Lemon billiards with complex phase space structure
Črt Lozej, Dragan Lukman, Marko Robnik, 2022, original scientific article

Abstract: The boundary of the lemon billiards is defined by the intersection of two circles of equal unit radius with the distance 2B between their centers, as introduced by Heller and Tomsovic [E. J. Heller and S. Tomsovic, Phys. Today 46, 38 (1993)]. This paper is a continuation of our recent papers on a classical and quantum ergodic lemon billiard (B = 0.5) with strong stickiness effects [C. Lozej ˇ et al., Phys. Rev. E 103, 012204 (2021)], as well as on the three billiards with a simple mixed-type phase space and no stickiness [C. Lozej ˇ et al., Nonlin. Phenom. Complex Syst. 24, 1 (2021)]. Here we study two classical and quantum lemon billiards, for the cases B = 0.1953, 0.083, which are mixed-type billiards with a complex structure of phase space, without significant stickiness regions. A preliminary study of their spectra was published recently [ C. Lozej, D. Lukman, and M. ˇ Robnik, Physics 3, 888 (2021)]. We calculate a very large number (106) of consecutive eigenstates and their Poincaré-Husimi (PH) functions, and analyze their localization properties by studying the entropy localization measure and the normalized inverse participation ratio. We introduce an overlap index, which measures the degree of the overlap of PH functions with classically regular and chaotic regions. We observe the existence of regular states associated with invariant tori and chaotic states associated with the classically chaotic regions, and also the mixed-type states. We show that in accordance with the Berry-Robnik picture and the principle of uniform semiclassical condensation of PH functions, the relative fraction of mixed-type states decreases as a power law with increasing energy, thus, in the strict semiclassical limit, leaving only purely regular and chaotic states. Our approach offers a general phenomenological overview of the structural and localization properties of PH functions in quantum mixed-type Hamiltonian systems.
Keywords: quantum physics, energy, localization, quantum chaos, billiards, chaotic systems
Published in DKUM: 12.10.2023; Views: 288; Downloads: 19
.pdf Full text (5,44 MB)
This document has many files! More...

3.
Quantum chaos in triangular billiards
Črt Lozej, Giulio Casati, Tomaž Prosen, 2022, original scientific article

Abstract: We present an extensive numerical study of spectral statistics and eigenfunctions of quantized triangular billiards. We compute two million consecutive eigenvalues for six representative cases of triangular billiards, three with generic angles with irrational ratios with π, whose classical dynamics is presumably mixing, and three with exactly one angle rational with π, which are presumably only weakly mixing or even nonergodic in case of right triangles. We find excellent agreement of short- and long-range spectral statistics with the Gaussian orthogonal ensemble of random matrix theory for the most irrational generic triangle, while the other cases show small but significant deviations which are attributed either to a scarring or superscarring mechanism. This result, which extends the quantum chaos conjecture to systems with dynamical mixing in the absence of hard (Lyapunov) chaos, has been corroborated by analyzing distributions of phase-space localization measures of eigenstates and inspecting the structure of characteristic typical and atypical eigenfunctions.
Keywords: quantum physics, quantum chaos, quantum scars, wave chaos, billiards, chaos and nonlinear dynamics, ergodic theory
Published in DKUM: 12.10.2023; Views: 294; Downloads: 35
.pdf Full text (11,21 MB)
This document has many files! More...

4.
Statistical Properties of Time-dependent Systems
Diego Fregolente Mendes De Oliveira, 2012, doctoral dissertation

Abstract: In the dissertation I have dealt with time-dependent (nonautonomous) systems, the conservative (Hamiltonian) as well as dissipative, and investigated their dynamical and statistical properties. In conservative (Hamiltonian) time-dependent systems the energy is not conserved, whilst the Liouville theorem about the conservation of the phase space volume still applies. We are interested to know, whether the system can gain energy, and whether this energy can grow unbounded, up to infinity, and we are interested in the system's behaviour in the mean, as well as its statistical properties. An example of such a system goes back to the 1940s, when Fermi proposed the acceleration of cosmic rays (in the first place protons) upon the collisions with moving magnetic domains in the interstellar medium of our Galaxy, and in other galaxies. He then proposed a simple mechanical one-dimensional model, the so-called Fermi-Ulam Model (FUM), where a point particle is moving between two rigid walls, one being at rest and the other one oscillating. If the oscillation is periodic and smooth, it turned out in a nontrivial way, which is, in the modern era of understanding the chaotic dynamical systems, well understood, namely that the unbounded increasing of the energy (the so-called Fermi acceleration) is not possible, due to the barriers in form of invariant tori, which partition the phase space into regions, between which the transitions are not possible. The research has then been extended to other simple dyanamical systems, which have complex dynamics. The first was so-called bouncer model, in which a point particle bounces off the oscillating platform in a gravitational field. In this simple system the Fermi acceleration is possible. Later the research was directed towards two-dimensional billiard systems. It turned out that the Fermi acceleration is possible in all such systems, which are at least partially chaotic (of the mixed type), or even in a system that is integrable as static, namely in case of the elliptic billiard. (The circle billiard is an exception, because it is always integrable, as the angular momentum is conserved even in time-dependent case.) The study of time-dependent systems has developed strongly worldwide around the 1990s, in particular in 2000s, and became one of the central topics in nonlinear dynamics. It turned out, quite generally, but formal and implicit, in the sense of mathematical existence theorems, that in nonautonomous Hamilton systems the energy can grow unbounded, meaning that the system ``pumps" the energy from the environment with which it interacts. There are many open questions: how does the energy increase with time, in particular in the mean of some representative ensemble of initial conditions (typically the phase space of two-dimensional time-dependent billiards is four-dimensional.) It turned out that almost everywhere the power laws apply, empirically, based on the numerical calculations, but with various acceleration exponents. If the Fermi acceleration is not posssible, like e.g. in the FUM, due to the invariant tori, then after a certain time of acceleration stage the crossover into the regime of saturation takes place, whose characteristics also follow the power laws. One of the central themes in the dissertation is the study of these power laws, their critical exponents, analytical relationships among them, using the scaling analysis (Leonel, McClintock and Silva, Phys. Rev. Lett. 2004). Furthermore, the central theme is the question, what happens, if, in a nonautonomous Hamilton system which exhibits Fermi acceleration, we introduce dissipation, either at the collisions with the walls (collisional dissipation) or during the free motion (in-flight dissipation, due to the viscosity of the fluid or the drag force etc.). Dissipation typically transforms the periodic points into point attractors and chaotic components into chaotic attractors. The Fermi acceleration is always suppressed. We are interested in the phase portraits of
Keywords: nonlinear dynamics, dynamical systems, conservative and dissipative systems, time-dependent systems, Fermi acceleration, billiards, kicked systems, chaos, chaotic and periodic attractors, bifurcations, boundary crisis
Published in DKUM: 19.09.2012; Views: 3259; Downloads: 162
.pdf Full text (16,09 MB)

Search done in 0.11 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica