| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Fibonacci dimension of the resonance graphs of catacondensed benzenoid graphs
Aleksander Vesel, 2013, original scientific article

Abstract: The Fibonacci dimension ▫$text{fdim}(G)$▫ of a graph ▫$G$▫ was introduced [in S. Cabello, D. Eppstein, S. Klavžar, The Fibonacci dimension of a graph Electron. J. Combin., 18 (2011) P 55, 23 pp] as the smallest integer ▫$d$▫ such that ▫$G$▫ admits an isometric embedding into ▫$Gamma_d$▫, the ▫$d$▫-dimensional Fibonacci cube. The Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacondensed benzenoid systems. Our results show that the Fibonacci dimension of the resonance graph of a catacondensed benzenoid system ▫$G$▫ depends on the inner dual of ▫$G$▫. Moreover, we show that computing the Fibonacci dimension can be done in linear time for a graph of this class.
Keywords: Fibonaccijeva dimenzija, benzenoidni sistemi, resonančni grafi, algoritem, Fibonacci dimension, benzenoid systems, resonance graphs, algorithm
Published: 10.07.2015; Views: 634; Downloads: 68
URL Link to full text

2.
On the Fibonacci dimension of partial cubes
Aleksander Vesel, 2009

Abstract: The Fibonacci dimension fdim▫$(G)$▫ of a graph ▫$G$▫ was introduced in [S. Cabello, D. Eppstein and S. Klavžar, The Fibonacci dimension of a graph, submitted] as the smallest integer ▫$d$▫ such that $G$ admits an isometric embedding into ▫$Q_d$▫, the ▫$d$▫-dimensional Fibonacci cube. A somewhat new combinatorial characterization of the Fibonacci dimension is given, which enables more comfortable proofs of some previously known results. In the second part of the paper the Fibonacci dimension of the resonance graphs of catacondensed benzenoid systems is studied. This study is inspired by the fact, that the Fibonacci cubes are precisely the resonance graphs of a subclass of the catacondensed benzenoid systems. The main result shows that the Fibonacci dimension of the resonance graph of a catacondensed benzenoid system ▫$G$▫ depends on the inner dual of ▫$G$▫. Moreover, we show that computing the Fibonacci dimension can be done in linear time for a graph of this class.
Keywords: matematika, teorija grafov, Fibonaccijeva dimenzija, delne kocke, resonančni grafi, benzenoidni sistemi, mathematics, graph theory, Fibonacci dimension, partial cubes, resonance graphs, benzenoid systems
Published: 10.07.2015; Views: 588; Downloads: 22
URL Link to full text

3.
Search done in 0.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica