| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Introducing auxetic behavior to syntactic foams
Nejc Novak, Miha Kolar, Nima Movahedi, Matej Vesenjak, Zoran Ren, Thomas Fiedler, 2020, original scientific article

Abstract: This paper proposes an innovative multi-material approach for introducing auxetic behaviour to syntactic foams (SFs). By carefully designing the size, shape, and orientation of the SFs, auxetic deformation behaviour was induced. Re-entrant hexagon-shaped SF elements were fabricated using expanded perlite (EP) particles and a plaster of Paris slurry first. Then, an auxetic pattern of these SF elements was arranged within a stainless-steel casting box. The empty spaces between the SF elements were filled with molten aluminium alloy (A356) using the counter-gravity infiltration casting technique. The cast auxetic composite had a bulk density of 1.52 g/cm3. The cast composite was then compressed under quasi-static loading to characterise its deformation behaviour and to determine the mechanical properties, especially the Poisson’s ratio. The cast composite deformation was auxetic with a Poisson’s ratio of −1.04. Finite Element (FE) simulations were conducted to understand the deformation mechanism better and provide means for further optimisation of the geometry.
Keywords: auxetic cellular structure, syntactic foams, experimental tests, mechanical properties, Poisson’s ratio
Published in DKUM: 28.03.2024; Views: 222; Downloads: 24
.pdf Full text (8,46 MB)
This document has many files! More...

2.
Dynamic characterisation of novel three-dimensional axisymmetric chiral auxetic structure
Anja Mauko, Yunus Emre Yilmaz, Nejc Novak, Tomáš Doktor, Matej Vesenjak, Zoran Ren, 2024, original scientific article

Abstract: The study presents an extensive mechanical and computational characterisation of novel cellular metamaterial with axisymmetric chiral structure (ACS) at different strain rates. The Direct Impact Hopkinson Bar (DIHB) testing device was used for impact testing up to 21 m/s striker speed, which was insufficient to reach the shock deformation regime. Thus, using computational simulations to estimate the structure behaviour at high strain rates was necessary. Experimental and computational results showed that all ACS structures exhibit a nominal stress–strain relationship typical for cellular materials. As the loading conditions shifted to a dynamic regime, the micro–inertia effect became increasingly pronounced, leading to a corresponding rise in structure stiffness. The Poisson's ratio in all ACS increases gradually, making them superior to traditional cellular materials, which experience a sudden increase in Poisson's ratio during loading. Additionally, the study found that the structures exhibited a rise in the auxetic effect with an increase in strain rate, highlighting the benefits of axisymmetric structures in high-loading regimes. Overall, the obtained results provide valuable insights into the mechanical properties of ACS under different loading regimes and will contribute to further design improvements and the fabrication of novel ACS metamaterials.
Keywords: axisymmetric chiral structure, auxetic, chiral unit cell, impact testing, dynamic characterisation, finite element simulations
Published in DKUM: 15.02.2024; Views: 345; Downloads: 31
.pdf Full text (7,73 MB)
This document has many files! More...

3.
Fabrication and mechanical testing of the uniaxial graded auxetic damper
Hasan Al-Rifaie, Nejc Novak, Matej Vesenjak, Zoran Ren, Wojciech Sumelka, 2022, original scientific article

Abstract: Auxetic structures can be used as protective sacrificial solutions for impact protection with lightweight and excellent energy-dissipation characteristics. A recently published and patented shock-absorbing system, namely, Uniaxial Graded Auxetic Damper (UGAD), proved its efficiency through comprehensive analytical and computational analyses. However, the authors highlighted the necessity for experimental testing of this new damper. Hence, this paper aimed to fabricate the UGAD using a cost-effective method and determine its load–deformation properties and energy-absorption potential experimentally and computationally. The geometry of the UGAD, fabrication technique, experimental setup, and computational model are presented. A series of dog-bone samples were tested to determine the exact properties of aluminium alloy (AW-5754, T-111). A simplified (elastic, plastic with strain hardening) material model was proposed and validated for use in future computational simulations. Results showed that deformation pattern, progressive collapse, and force–displacement relationships of the manufactured UGAD are in excellent agreement with the computational predictions, thus validating the proposed computational and material models.
Keywords: uniaxial graded auxetic damper, energy absorber, mechanical properties, finite element method, explicit solver
Published in DKUM: 28.07.2023; Views: 515; Downloads: 43
.pdf Full text (7,31 MB)
This document has many files! More...

4.
Development, fabrication and mechanical characterisation of auxetic bicycle handlebar grip
Nejc Novak, Vasja Plesec, Gregor Harih, Andrej Cupar, Jasmin Kaljun, Matej Vesenjak, 2023, original scientific article

Abstract: The auxetic cellular structures are one of the most promising metamaterials for vibration damping and crash absorption applications. Therefore, their use in the bicycle handlebar grip was studied in this work. A preliminary computational design study was performed using various auxetic and non-auxetic geometries under four load cases, which can typically appear. The most representative geometries were then selected and fabricated using additive manufacturing. These geometries were then experimentally tested to validate the discrete and homogenised computational models. The homogenised computational model was then used to analyse the biomechanical behaviour of the handlebar grip. It was observed that handle grip made from auxetic cellular metamaterials reduce the high contact pressures, provide similar stability and hereby improve the handlebar ergonomics.
Keywords: auxetic cellular structures, computational simulations, experimental testing
Published in DKUM: 23.05.2023; Views: 413; Downloads: 54
.pdf Full text (2,63 MB)
This document has many files! More...

Search done in 0.14 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica