1. Films based on TEMPO-oxidized chitosan nanoparticles: Obtaining and potential application as wound dressingsMatea Korica, Katarina Mihajlovski, Tamilselvan Mohan, Mirjana M. Kostić, 2024, original scientific article Abstract: A series of novel films based on TEMPO-oxidized chitosan nanoparticles were prepared by casting method.
Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the chemical structure of TEMPOoxidized chitosan. The surface morphology of the TEMPO-oxidized chitosan nanoparticles was analyzed by
atomic force microscopy (AFM). The physicochemical (area density, thickness, iodine sorption, roughness),
functional (moisture sorption, liquid absorption capacity, weight loss upon contact with the liquid, and water
vapor transmission rate), antibacterial, and antioxidant properties of films based on TEMPO-oxidized chitosan
nanoparticles were also investigated. The physicochemical properties of the films varied widely: area density
ranged from 77.83 ± 0.06 to184.46 ± 0.05 mg/cm2
, thickness varied between 80.5 ± 1.6 and 200.5 ± 1.6 μm,
iodine sorption spanned from 333.7 ± 2.1 to166.4 ± 2.2 mg I2/g, and roughness ranged from 4.1 ± 0.2 to 5.6 ±
0.3 nm. Similarly, the functional properties also varied significantly: moisture sorption ranged from 4.76 ± 0.03
to 9.62 ± 0.11 %, liquid absorption capacity was between 129.04 ± 0.24 and 159.33 ± 0.73 % after 24 h, weight
loss upon contact with the liquid varied between 31.06 ± 0.35 and 45.88 ± 0.58 % after 24 h and water vapor
transmission rate ranged from 1220.10 ± 2.91to1407.77 ± 5.22 g/m2 day. Despite the wide variations in
physicochemical and functional properties, all films showed maximum bacterial reduction of Staphylococcus
aureus and Escherichia coli, although they exhibited low antioxidant activity. The results suggest that the films
could be effectively utilized as antibacterial wound dressings. Keywords: TEMPO-oxidized chitosan nanoparticles, films, antibacterial activity, wound dressings Published in DKUM: 11.09.2024; Views: 56; Downloads: 27 Full text (4,92 MB) This document has many files! More... |
2. Antibacterial Komagataeibacter hansenii nanocellulose membranes with avocado seed bioactive compoundsKaja Kupnik, Mateja Primožič, Vanja Kokol, Željko Knez, Maja Leitgeb, 2024, original scientific article Keywords: bacterial nanocellulose membrane, avocado seed extracts, extraction, swelling, release, antibacterial activity Published in DKUM: 23.08.2024; Views: 70; Downloads: 4 Full text (1,80 MB) |
3. Mango peels as an industrial by-product: a sustainable source of compounds with antioxidant, enzymatic, and antimicrobial activityNika Kučuk, Mateja Primožič, Petra Kotnik, Željko Knez, Maja Leitgeb, 2024, original scientific article Abstract: Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for further use in generating value-added products for the food industry. The objective of the study was to investigate and compare the biological activity of compounds from fresh and dried mango peels obtained by different conventional methods and unconventional extraction methods using supercritical fluids (SFE). The highest total phenolic content (25.0 mg GAE/g DW) and the total content of eight phenolic compounds (829.92 µg/g DW) determined by LC-MS/MS were detected in dried mango peel extract obtained by the Soxhlet process (SE). SFE gave the highest content of proanthocyanidins (0.4 mg PAC/g DW). The ethanolic ultrasonic process (UAE) provided the highest antioxidant activity of the product (82.4%) using DPPH radical scavenging activity and total protein content (2.95 mg protein/g DW). Overall, the dried mango peels were richer in bioactive compounds (caffeic acid, chlorogenic acid, gallic acid, catechin, and hesperidin/neohesperidin), indicating successful preservation during air drying. Furthermore, outstanding polyphenol oxidase, superoxide dismutase (SOD), and lipase activities were detected in mango peel extracts. This is the first study in which remarkable antibacterial activities against the growth of Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) were evaluated by determining the microbial growth inhibition rate after 12 and 24 h incubation periods for mango peel extracts obtained by different methods. Ethanolic SE and UAE extracts from dried mango peels resulted in the lowest minimum inhibitory concentrations (MIC90) for all bacterial species tested. Mango peels are remarkable waste products that could contribute to the sustainable development of exceptional products with high-added value for various applications, especially as dietary supplements. Keywords: mangifera indica, peels, bioactive substances, LC-MS/MS, proteins, enzymes, antibacterial activity Published in DKUM: 12.08.2024; Views: 104; Downloads: 8 Full text (6,49 MB) |
4. Cationised fibre-based cellulose multi-layer membranes for sterile and high-flow bacteria retention and inactivationVanja Kokol, Monika Kos, Vera Vivod, Nina Gunde-Cimerman, 2023, original scientific article Abstract: Low-cost, readily available, or even disposable membranes in water purification or downstream biopharma processes are becoming attractive alternatives to expensive polymeric columns or filters. In this article, the potential of microfiltration membranes prepared from differently orientated viscose fibre slivers, infused with ultrafine quaternised (qCNF) and amino-hydrophobised (aCNF) cellulose nanofibrils, were investigated for capturing and deactivating the bacteria from water during vacuum filtration. The morphology and capturing mechanism of the single- and multi-layer structured membranes were evaluated using microscopic imaging and colloidal particles. They were assessed for antibacterial efficacy and the retention of selected bacterial species (Escherichia coli, Staphylococcus aureus, Micrococcus luteus), differing in the cell envelope structure, hydrodynamic biovolume (shape and size) and their clustering. The aCNF increased biocidal efficacy significantly when compared to qCNF-integrated membrane, although the latter retained bacteria equally effectively by a thicker multi-layer structured membrane. The retention of bacterial cells occurred through electrostatic and hydrophobic interactions, as well as via interfibrous pore diffusion, depending on their physicochemical properties. For all bacterial strains, the highest retention (up to 100% or log 6 reduction) at >50 L/h∗bar∗m2 flow rate was achieved with a 4-layer gradient-structured membrane containing different aCNF content, thereby matching the performance of industrial polymeric filters used for removing bacteria. Keywords: fibrous membrane, cationised cellulose nanofibrils, amino-hydrophobised cellulose nanofibrils, antibacterial activity, multi-layer structure, flux, bacteria retention Published in DKUM: 28.03.2024; Views: 220; Downloads: 6 Full text (3,99 MB) This document has many files! More... |
5. The Influence of Chestnut Extract and Its Components on Antibacterial Activity against Staphylococcus aureusSara Štumpf, Gregor Hostnik, Tomaž Langerholc, Maša Pintarič, Zala Kolenc, Urban Bren, 2023, original scientific article Abstract: Increasing antimicrobial resistance has caused a great interest in natural products as alternatives or potentiators of antibiotics. The objective of this study was to isolate individual tannins from crude chestnut extract as well as to determine the influence of both crude extracts (tannic acid extract, chestnut extract) and individual pure tannins (gallic acid, vescalin, vescalagin, castalin, castalagin) on the growth of Gram-positive Staphylococcus aureus bacteria. Their antibacterial activity was monitored by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as well as the duration of the lag phase, growth rate and generation time. The effect of growth medium strength on the MIC of different tannins was also investigated. Bacterial growth was followed spectrophotometrically, and MIC values were determined by the microdilution method. The MIC values of various isolated compounds allowed us to determine the bioactive compounds and their contribution to antimicrobial activity. It was found that MIC values increase with increasing growth medium strength and that the lag phase lengthens with increasing tannin concentrations, while the growth rates decrease. Comparing the results of the two studies, the antimicrobial activity of tannins against S. aureus was not as pronounced as in the case of E. coli, which may indicate that a different mechanism of action is responsible for the antimicrobial effects of tannins on Gram-positive than on Gram-negative bacteria, or that a different mechanism is more pronounced. Keywords: tannins, antibacterial activity, MIC, MBC, Staphylococcus aureus, lag phase, generation time Published in DKUM: 20.02.2024; Views: 363; Downloads: 64 Full text (1,19 MB) This document has many files! More... |
6. Kraft lignin/tannin as a potential accelerator of antioxidant and antibacterial properties in an active thermoplastic polyester-based multifunctional materialKlementina Pušnik Črešnar, Alexandra Zamboulis, Dimitrios Bikiaris, Alexandra Aulova, Lidija Fras Zemljič, 2022, original scientific article Abstract: This research focuses on key priorities in the field of sustainable plastic composites that will lead to a reduction in CO2 pollution and support the EU’s goal of becoming carbon neutral by 2050. The main challenge is to develop high-performance polyphenol-reinforced thermoplastic composites, where the use of natural fillers replaces the usual chemical additives with non-toxic ones, not only to improve the final performance but also to increase the desired multifunctionalities (structural, antioxidant, and antibacterial). Therefore, poly (lactic acid) (PLA) composites based on Kraft lignin (KL) and tannin (TANN) were investigated. Two series of PLA composites, PLA-KL and PLA-TANN, which contained natural fillers (0.5%, 1.0%, and 2.5% (w/w)) were prepared by hot melt extrusion. The effects of KL and TANN on the PLA matrices were investigated, especially the surface physicochemical properties, mechanical properties, and antioxidant/antimicrobial activity. The surface physicochemical properties were evaluated by measuring the contact angle (CA), roughness, zeta potential, and nanoindentation. The results of the water contact angle showed that neither KL nor TANN caused a significant change in the wettability, but only a slight increase in the hydrophilicity of the PLA composites. The filler loading, the size of the particles with their available functional groups on the surfaces of the PLA composites, and the interaction between the filler and the PLA polymer depend on the roughness and zeta potential behavior of the PLA-KL and PLA-TANN composites and ultimately improve the surface mechanical properties. The antioxidant properties of the PLA-KL and PLA-TANN composites were determined using the DPPH (2,2′-diphenyl-1-picrylhydrazyl) test. The results show an efficient antioxidant behavior of all PLA-KL and PLA-TANN composites, which increases with the filler content. Finally, the KL- and PLA-based TANN have shown resistance to the Gram-negative bacteria, E. coli, but without a correlation trend between polyphenol filler content and structure. Keywords: poly (lactic acid), Kraft lignin, tannin, multifunctionality of PLA composites, surface mechanical properties, antioxidant/antibacterial activity Published in DKUM: 18.09.2023; Views: 495; Downloads: 26 Full text (3,87 MB) This document has many files! More... |
7. Pullulan-based films impregnated with silver nanoparticles from the Fusarium culmorum strain JTW1 for potential applications in the food industry and medicineMagdalena Wypij, Mahendra Rai, Lidija Fras Zemljič, Matej Bračič, Silvo Hribernik, Patrycja Golińska, 2023, original scientific article Abstract: Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties.
Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection–Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods.
Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes.
Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications. Keywords: Aureobasidium pullulans, pullulan, nanocomposite films, silver nanoparticles, mycosynthesis, nanobiotechnology, applied microbiology, antibacterial activity Published in DKUM: 08.09.2023; Views: 469; Downloads: 33 Full text (4,23 MB) This document has many files! More... |
8. Effect of peptides' binding on the antimicrobial activity and biocompatibility of protein-based substrates Maja Kaisersberger Vincek, 2017, doctoral dissertation Abstract: This work reveals the effect of coupling approach (chemical by using carbodiimide chemistry and grafting-to vs. grafting-from synthesis routes, and enzymatic by using transglutaminase) of a hydrophilic ε-poly-L-lysine (εPL) and an amphiphilic oligo-acyl-lysyl (OAK) derivative (K-7α12-OH) to wool fibers and gelatine (GEL) macromolecules, respectively, and substrates antibacterial activity against Gram-negative E. coli and Gram-positive S. aureus bacteria after 1–24 h of exposure, as well as their cytotoxicity. Different spectroscopic (ultraviolet-visible, infrared, fluorescence and electron paramagnetic resonance) and separation techniques (size-exclusion chromatography and capillary zone electrophoresis) as well as zeta potential and potentiometric titration analysis, were performed to confirm the covalent coupling of εPL/OAK, and to determine the amount and orientation of its immobilisation.
The highest and kinetically the fastest level of bacterial reduction was achieved with wool/GEL functionalised with εPL/OAK by chemical grafting-to approach. This effect correlated with both the highest grafting yield and conformationally the highly-flexible (brush-like) orientation linkage of εPL/OAK, implicating on the highest amount of accessible amino groups interacting with bacterial membrane. However, OAK`s amphipathic structure, the cationic charge and the hydrophobic moieties, resulted to relatively high reduction of S. aureus for grafting-from and the enzymatic coupling approaches using OAK-functionalised GEL.
The εPL/OAK-functionalised GEL did not induce toxicity in human osteoblast cells, even at ~25-fold higher concentration than bacterial minimum inhibitory (MIC) concentration of εPL/OAK, supporting their potential usage in biomedical applications.
It was also shown that non-ionic surfactant adsorbs strongly onto the wool surface during the process of washing, thereby blocking the functional sites of immobilized εPL and decreases its antibacterial efficiency.
Keywords: wool, gelatine, antimicrobial peptides, ε-poly-L-lysine, oligo-acyl-lysyl, grafting chemistry, grafting approach, peptide orientation, antibacterial activity, cytotoxicity Published in DKUM: 17.08.2017; Views: 1931; Downloads: 176 Full text (3,98 MB) |
9. Antibacterial and anticandidal activity of Tylosema esculentum (marama) extractsWalter Chingwaru, Gyebi Duodu, Yolandi Van Zyl, Schoeman, Runner Majinda, Sam Yeboah, Jose Jackson, Petrina Kapewangolo, Kandawa-Shulz, Minnaar, Avrelija Cencič, 2011, original scientific article Abstract: Bean and tuber extracts of Tylosema esculentum (marama) – an African creeping plant – were obtained using ethanol, methanol and water. Based on information that T. esculentum is used traditionally for the treatment of various diseases, the antibacterial and anticandidal effects of tuber and bean extracts were investigated. The antimicrobial activity of the extracts was tested on methicillin-resistant Staphylococcus aureus (MRSA, ATCC 6538), Mycobacterium terrae (ATCC 15755), Corynebacterium diphtheriae (clinical) and Candida albicans (ATCC 2091). We performed the broth microdilution test for the determination of the minimum inhibitory concentration (MIC) and a method to determine survival of microorganisms after in vitro co-incubation with the highest concentrations of T. esculentum extracts, followed by assessment of colony counts. Ethanol and methanol (phenolic) bean extracts exhibited higher potency against bacteria and yeast than aqueous extracts. Marama bean seed coat crude ethanolic extract (MSCE) and seed coat polyphenolic fractions, especially soluble-bound fraction (MSCIB), were highly antimicrobial against M. terrae, C. diphtheriae and C. albicans. All marama bean polyphenolic fractions, namely cotyledon acidified methanol fraction (MCAM), seed coat acidified methanol fraction (MSCAM), cotyledon insoluble-bound fraction (MCIB), seed coat insoluble-bound fraction (MSCIB), cotyledon-free polyphenolic fraction (MCFP) and seed coat free polyphenolic fraction (MSCFP) had high antimicrobial effects as shown by low respective MIC values between 0.1 mg/mL and 1 mg/mL. These MIC values were comparable to those of control antimicrobials used: amphotericin B (0.5 mg/mL) and cesfulodin (0.1 mg/mL) against C. diphtheriae, streptomycin (1.0 mg/mL) and gentamicin (0.4 mg/mL) against M. terrae, and amphotericin B (0.05 mg/mL) against C. albicans. Marama seed coat soluble-esterified fraction (MSCS) had closer activity to that of cefsulodin against M. terrae. High amounts of phenolic substances, such as gallic acid, especially in the seed coats, as well as high amounts of phytosterols, lignans, certain fatty acids and peptides (specifically protease inhibitors) in the cotyledons contributed to the observed antibacterial and anticandidal activities. Marama extracts, especially phenolic and crude seed coat extracts, had high multi-species antibacterial and anticandidal activities at concentrations comparable to that of some conventional drugs; these extracts have potential use as microbicides. Keywords: marama, Tylosema esculentum, antibacterial activity, anticandidal activity Published in DKUM: 07.08.2017; Views: 1209; Downloads: 340 Full text (1,38 MB) This document has many files! More... |