1. Annihilation of highly-charged topological defectsEva Klemenčič, Pavlo Kurioz, Milan Ambrožič, Charles Rosenblatt, Samo Kralj, 2020, original scientific article Abstract: We studied numerically external stimuli enforced annihilation of a pair of daughter nematic topological defect (TD) assemblies bearing a relatively strong topological charge |m|=3/2. A Landau- de Gennes phenomenological approach in terms of tensor nematic order parameter was used in an effectively two-dimensional Cartesian coordinate system, where spatial variations along the z-axis were neglected. A pair of {m=3/2,m=−3/2} was enforced by an appropriate surface anchoring field, mimicking an experimental sample realization using the atomic force microscope (AFM) scribing method. Furthermore, defects were confined within a rectangular boundary that imposes strong tangential anchoring. This setup enabled complex and counter-intuitive annihilation processes on varying relevant parameters. We present two qualitatively different annihilation paths, where we either gradually reduced the relative surface anchoring field importance or increased an external in-plane spatially homogeneous electric field E. The creation and depinning of additional defect pairs {12,−12} mediated the annihilation in such a geometry. Furthermore, we illustrate the absorption of TDs by sharp edges of the confining boundary, accompanied by m=±1/4↔∓1/4 winding reversal of edge singularities, and also E-driven zero-dimensional to one-dimensional defect core transformation. Keywords: liquid crystals, topological defects, annihilation, order reconstruction Published in DKUM: 24.01.2025; Views: 0; Downloads: 10
Full text (3,58 MB) This document has many files! More... |
2. Effective topological charge cancelation mechanismLuka Mesarec, Wojciech Góźdź, Aleš Iglič, Samo Kralj, 2016, original scientific article Abstract: Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. Keywords: topological defects, topological charge, numerical studies, orientational ordering, nematic liquid crystals, liquid crystalline shells, biological membranes, nanoparticles, Gaussian curvature, electrostatic analogy, annihilation, topology Published in DKUM: 23.06.2017; Views: 1141; Downloads: 350
Full text (2,15 MB) This document has many files! More... |
3. Annihilation of defects in liquid crystalsMilan Svetec, Milan Ambrožič, Samo Kralj, 2007, published scientific conference contribution Abstract: The annihilation of defect is studied theoretically in liquid crystals (LCs). We consider the annihilation of point disclinations in nematic and line edge dislocations in smectic A LC phase, respectively. We stres s qualitative similarities in these processes. The whole annihilation regime is taken into account, consisting of the pre-collision, collision, and post-collision stage. Keywords: physics, liquid crystals, annihilation, defects, point defects, point disclinations, edge dislocations Published in DKUM: 07.06.2012; Views: 1568; Downloads: 107
Link to full text |