Abstract: Several Al-alloys strengthened by quasicrystalline phases have been developed over the last few years showing the considerable potential for practical application. Therefore there is a strong need for developing new metallographic methods or adapting the traditional ones in order to identify and characterize quasicrystalline phases in a reliable, quick and economical way. This paper describes different techniques: the classical metallographic method, deep etching, particle extraction technique and cross-sectioning using focused ion beam (FIB), and discusses their advantages and disadvantages when identifying quasicrystalline particles. It was discovered that particle extraction techniques are very powerful methods for the identification of phases according to their morphology, and preparation of quality samples for X-ray diffraction (XRD). Transmission electron microscopy (TEM) analyses are also possible provided the extracted particles are thin enough.Keywords: alluminium alloys, quasicrystal, metallography, deep etching, particle extractionPublished: 31.05.2012; Views: 1529; Downloads: 92 Link to full text
Abstract: An Al94Mn2Be2Cu2 cast alloy was developed displaying increased quasicrystalline formation ability at moderate cooling rates. The as-cast microstructure consisted of a mainly icosahedral phase in the Al-matrix. The microstructure remained stable during uniform heating to 580 °C and isothermalannealing at 400 °C. Most of the icosahedral phase was preserved even after 24 h annealing at 500 °C. For that reason, this alloy presents a promising basis for further development of cast Al-alloys containing quasicrystals.Keywords: alluminium alloys, casting, quasicrystals, TEM, SEMPublished: 31.05.2012; Views: 1387; Downloads: 84 Link to full text