| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Modification of PET-polymer surface by nitrogen plasma
Rok Zaplotnik, Metod Kolar, Aleš Doliška, Karin Stana-Kleinschek, 2011, original scientific article

Abstract: Low pressure weakly nitrogen plasma was applied for incorporation of nitrogen-containing functional groups onto poly(ethylene terephthalate) - PET polymer. Nitrogen plasma was created in an electrode-less radiofrequency discharge at the nominal power of 200 W and the frequency of 27.12 MHz. Nitrogen molecules entered the discharge region were highly excited, partially dissociated and weakly ionized. Transformation into the state of plasma allowed for creation of chemically reactive particles with a high potential energy while the kinetic energy remained close to the value typical for room temperature. The chemical reactivity allowed for rapid functionalization with nitrogen-rich functional groups. The appearance of these groups was monitored by X-ray photoelectron spectroscopy - XPS. The polymer surface was quickly saturated with nitrogen indicating that the modification was limited to an extremely thin surface film.
Keywords: poly(ethylene terephthalate), nitrogen plasma, surface modification, functional groups, X-ray photoelectron spectroscopy
Published in DKUM: 17.03.2017; Views: 1041; Downloads: 97
.pdf Full text (150,48 KB)
This document has many files! More...

2.
Analysis of the oxidation of cellulose fibres by titration and XPS
Lidija Fras Zemljič, Leena Sisko Johansson, Peer Stenius, Janne Laine, Karin Stana-Kleinschek, Volker Ribitsch, 2005, original scientific article

Abstract: The purpose of this study was to evaluate the effect of selective oxidation on the surface properties of cotton cellulose fibres. Four different methods to evaluate the accessibility, nature and content of ionisable acidic groups (charge) in the fibres were applied: potentiometric and conductometric titrations, polyelectrolyte adsorption and X-ray photoelectron spectroscopy (XPS). The results from this combination of methods show that two processes take place when the oxidation method is applied: elimination of low molecular mass non-cellulosic compounds and formation of new acidic groups in the cellulose chains. Which of these processes is predominating depends on oxidation time, but the first one is initially more important. Polyelectrolyte adsorption and XPS show that the surface concentration of acidic groups is considerably lower than the bulk concentration, i.e. during oxidation the content of carboxyl groups in the surface region decreases, while it increases in amorphous regions. The decrease is due to the dissolution of low molecular weight compounds; the increase is due to the formation of new acidic groups. The use of titration methods in combination with XPS appears to be a very useful tool for identification of the formation and distribution of ionic groups in cotton fibres and their surfaces.
Keywords: textile fibres, cotton fibres, cellulose fibres, oxidation, X-ray photoelectron spectroscopy, XPS, acid groups in fibres
Published in DKUM: 01.06.2012; Views: 2114; Downloads: 114
URL Link to full text

Search done in 0.03 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica