| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
Grafi, ki dosežejo enakost v vizingovi domnevi : magistrsko delo
Anamarija Lakner, 2022, master's thesis

Abstract: Vizing je leta 1968 postavil domnevo, da je dominantno število kartezičnega produkta dveh grafov večje ali enako produktu njunih dominantnih števil. V magistrskem delu obravnavamo družine grafov, ki v tej domnevi dosežejo enakost. V prvem delu magistrske naloge smo navedli pojme in trditve, ki jih potrebujemo za razumevanje glavnega problema naloge. Drugo poglavje se nanaša na različne meje dominantnega števila kartezičnega produkta dveh grafov in družine grafov, ki zadoščajo Vizingovi domnevi. V tretjem poglavju obravnavamo družine grafov, ki pod določenimi pogoji dosežejo enakost v Vizingovi domnevi, ter znane rezultate podamo v tabeli.
Keywords: dominantno število, dominantna množica, Vizingova domneva, enakost v Vizingovi domnevi
Published in DKUM: 28.10.2022; Views: 573; Downloads: 49
.pdf Full text (568,89 KB)

2.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, review article

Abstract: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve.
Keywords: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Published in DKUM: 10.07.2015; Views: 1362; Downloads: 90
URL Link to full text

3.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2009

Abstract: Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw-free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper.
Keywords: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Published in DKUM: 10.07.2015; Views: 1365; Downloads: 99
URL Link to full text

4.
Fair reception and Vizing's conjecture
Boštjan Brešar, Douglas F. Rall, 2009, original scientific article

Abstract: Vpeljemo koncept poštenega sprejema grafa, ki je povezan z njegovim dominantnim številom. Dokažemo, da za vse grafe, ki imajo pošten sprejem velikosti njihovega dominantnega števila, velja Vizingova domneva o dominantnem številu kartezičnega produkta grafov, s čimer posplošimo dobro znan rezultat Barcalkina in Germana o razstavljivih grafih. S kombiniranjem nav sega koncepta in rezultata Aharonija, Bergerja in Ziva dobimo alternativen dokaz izreka Aharonija in Szaba, ki pravi, da tetivni grafi zadoščajo Vizingovi domnevi. Predstavimo tudi novo neskončno družino grafov, ki zadoščajo Vizingovi domnevi.
Keywords: matematika, teorija grafov, dominacija, kartezični produkt grafov, Vizingova domneva, mathematics, graph theory, domination, Cartesian product of graphs, Vizing's conjecture
Published in DKUM: 10.07.2015; Views: 1254; Downloads: 113
URL Link to full text

5.
Domination game
Boštjan Brešar, Sandi Klavžar, Douglas F. Rall, 2009

Abstract: The domination game played on a graph ▫$G$▫ consists of two players, Dominator and Staller who alternate taking turns choosing a vertex from ▫$G$▫ such that whenever a vertex is chosen the graph in as few steps as possible and Staller wishes to delay the process as much as possible. The game domination number ▫$gamma_g(G)$▫ is the number of vertices chosen when Dominator starts the game and the Staller-start game domination number ▫$gamma'_g(G)$▫ when Staller starts the game. It is proved that for any graph ▫$G$▫, ▫$gamma(G) le gamma_g(G) le 2gamma(G) - 1$▫, and that all possible values can be realized. It is also proved that for any graph ▫$G$▫, ▫$gamma_g(G) - 1 le gamma'_g(G) le gamma_g(G) + 2$▫, and that most of the possibilities for mutual values of ▫$gamma_g(G)$▫ and ▫$gamma'_g(G)$▫ can be realized. A connection with Vizing's conjecture is established and several problems and conjectures stated.
Keywords: teorija grafov, teorija iger, dominantnost, Vizingova domneva, graph theory, game theory, domination, domination game, game domination number, Vizing's conjecture
Published in DKUM: 10.07.2015; Views: 1963; Downloads: 31
URL Link to full text

6.
On integer domination in graphs and Vizing-like problems
Boštjan Brešar, Michael A. Henning, Sandi Klavžar, 2006, original scientific article

Abstract: Nadaljujemo študij ▫${k}$▫-dominantnih funkcij v grafih (ali, kot bomo tudi rekli, celoštevilske dominacije), ki so jo začeli Domke, Hedetniemi, Laskar in Fricke. Za celo število ▫$k ge 1$▫ je funkcija ▫$f: V(G) to {0,1,...,k}$▫, definirana na točkah grafa ▫$G$▫, ▫${k}$▫-dominantna funkcija, če je vsota funkcijskih vrednosti na vsaki zaprti okolici vsaj ▫$k$▫. Teža ▫${k}$▫-dominantne funkcije je vsota funkcijskih vrednosti po vseh točkah. ▫${k}$▫-dominantno število grafa ▫$G$▫ je najmanjša teža ▫${k}$▫-dominantne funkcije na ▫$G$▫. Obravnavamo ▫${k}$▫-dominantno število kartezičnega produkta grafov, predvsem probleme povezane s slavno Vizingovo domnevo. Študirana je tudi povezava med ▫${k}$▫-dominantnim številom in drugimi tipi dominacijskih parametrov.
Keywords: matematika, teorija grafov, ▫${k}$▫-dominantna funkcija, celoštevilska dominacija, Vizingova domneva, kartezični produkt grafov, mathematics, graph theory, ▫${k}$▫-dominating function, integer domination, Vizing's conjecture, Cartesian product
Published in DKUM: 10.07.2015; Views: 1280; Downloads: 68
URL Link to full text

7.
Behzad-Vizing conjecture and Cartesian-product graphs
Blaž Zmazek, Janez Žerovnik, 2004, published scientific conference contribution

Abstract: We prove the following theorem: if the Behzad-Vizing conjecture is true for graphs ▫$G$▫ and ▫$H$▫, then is it true for the cartesian product ▫$G Box H$▫.
Keywords: matematika, teorija grafov, kartezični produkt grafov, kromatično število, popolno kromatično število, Vizingova domneva, mathematics, graph theory, Cartesian graph product, chromatic number, total chromatic number, Vizing conjecture
Published in DKUM: 10.07.2015; Views: 1548; Downloads: 87
URL Link to full text

8.
NEENAKOSTI VIZINGOVEGA TIPA ZA RAZLIČNE DOMINACIJSKE INVARIANTE
Vika Koban, 2012, undergraduate thesis

Abstract: Dominacija na grafih je intenzivno raziskovana veja v teoriji grafov. Leta 1963 je Vizing postavil domnevo, da je dominantno število kartezičnega produkta dveh grafov kvečjemu večje od produkta njunih dominantih števil. Mnogo delnih rezultatov je bilo dokazanih, vendar pa je le-ta še vedno eden izmed največjih odprtih problemov v študiju dominacije na grafih. V tem diplomskem delu so v ospredju obravnavani najbolj znani izreki Vizingovega tipa za različne dominacijske invariante. Na začetku predstavimo nekaj dejstev o dominaciji na kartezičnem produktu. Opišemo znan Clark-Suenov rezultat Vizingovega tipa in t.i. razstavljive grafe, za katere Vizingova domneva drži. Drugi del se nanaša na pet dominacijskih invariant; totalno, celoštevilsko, zgornjo, deljeno dominantno število in dominacijo po parih. Predstavljeni so izreki Vizingovega tipa za posamezne dominacijske parametre, kot na primer izrek za deljeno-dominantno število, Ho-jev izrek o totalnem dominantnem številu in izrek Vizingovega tipa za zgornje dominantno število.
Keywords: dominantna množica, dominantno število, Vizingova domneva, dominacijske invariante
Published in DKUM: 11.09.2012; Views: 2126; Downloads: 254
.pdf Full text (715,88 KB)

Search done in 0.22 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica