| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Obogatitev 3D upodobitve z globalnim osvetlitvenim modelom z uporabo generativnih nasprotniških nevronskih mrež
Marko Zmazek, 2024, master's thesis

Abstract: V računalniški grafiki je upodabljanje z globalnim osvetlitvenim modelom v realnem času še vedno aktualen izziv. Pri upodabljanju z globalnim osvetlitvenim modelom upodobitev izgleda bolj realistično, saj lahko dodamo učinke, kot sta odboj in lom svetlobe. V magistrskem delu smo implementirali in naučili generativno nasprotniško nevronsko mrežo, da obogati sliko 3D scene z globalnim osvetlitvenim modelom na podlagi slike 3D scene, upodobljene z lokalnim osvetlitvenim modelom, in dodatnih informacij o sceni, ki jih lahko hitro izračunamo že pri uporabi lokalnega osvetlitvenega modela. Ustrezno načrtovana in naučena nevronska mreža lahko na scenah, uporabljenih v fazi učenja, daje rezultate primerljive s klasičnimi metodami upodabljanja z globalnim osvetlitvenim modelom, kot je sledenje potem. Predvsem pa je lahko pri delovanju hitrejša, zato bi se lahko uporabljala za aplikacije v realnem času.
Keywords: računalniška grafika, osvetlitev, generativne nasprotniške nevronske mreže, PyTorch, Blender
Published in DKUM: 19.09.2024; Views: 0; Downloads: 58
.pdf Full text (19,56 MB)

2.
Razpoznava umetno ustvarjenih slik z metodami strojnega učenja
Jan Premzl, 2024, master's thesis

Abstract: V zaključnem delu smo izdelali modularno aplikacijo, ki je namenjena napovedovanju, ali je slika realna ali umetno ustvarjena. Za ta namen smo naučili enajst različnih modelov, vsakega s petnajstimi različnimi kombinacijami hiperparemetrov. Na podlagi tega smo dobili rezultate, kjer smo izračunali razne statistične mere in korelacije med rezultati. Poleg servisa za klasifikacijo oz. za učenje modelov smo izdelali tudi servis za ustvarjanje učne množice po lastnih željah, spletno aplikacijo, ki omogoča napovedi, in aplikacijski programski vmesnik, ki služi za komunikacijo med servisom za razpoznavo in spletno aplikacijo.
Keywords: Strojno učenje, nevronske mreže, klasifikacija, PyTorch
Published in DKUM: 11.09.2024; Views: 56; Downloads: 42
.pdf Full text (9,68 MB)

3.
Razvoj sistema za pretvorbo besedil v govor z globokimi nevronskimi mrežami : magistrsko delo
Matevž Bratina, 2021, master's thesis

Abstract: V magistrski nalogi smo razvili sistem pretvorbe besedila v govor PLATTOS za več jezikov. Sistem bazira na osnovi globokih nevronskih mrež. Osnovni cilj naloge je bil razviti in testirati sistem sinteze govora na osnovi globokega učenja, ki bo čim bolje generiral govor v več jezikih, pri čemer je tudi pomemben čas generiranja. Prvi del naloge tako predstavlja pregled tehnologij sistemov sinteze govora in njihova podrobnejša analiza. Zanimala nas je namreč arhitektura sistema sinteze govora, medsebojna primerjava zmogljivosti sistemov, njihov razvoj in kvaliteta sintetiziranega signala, ki ga določen TTS lahko generira. Sledila je izbira tehnologije globokega učenja, in razvoj novega TTS sistema. Izbrali smo tisto, ki je izkazovala največji potencial, da izpolni vse zastavljene cilje. Sledil je razvoj TTS sistema. Za prvo stopnjo (pretvorba vhodnega besedila v spektrogram) smo izbrali Tacotron globoki model. Ta je namenjen pretvorbi spektrogramov v pripadajoči govorni signal. V drugi stopnji, smo izbrali vokoder Waveglow. Pred izbiro komponent sistema, smo različne tipe vokoderjev in rekonstrukcijskih algoritmov tudi testirali. Sistem TTS na osnovi globokih nevronskih mrež PLATTOS smo testirali na različnih prosto dostopnih bazah govornih podatkov večih jezikov. Ocenjevali in primerjali smo tudi kvaliteto sinteze govora različnih arhitektur z globokimi nevronskimi mrežami. Kot kriterij kvalitete sinteze govora, smo bili predvsem pozorni na naravnost in razumljivost sintetiziranega govora. Pri ocenjevanju kvalitete smo tako uporabili subjektivne MUSHRA teste. Pokazalo se je, da kombinacija globokih nevronskih modelov Tacotron in Waveglow zagotovi najboljše rezultate v večih jezikih, kar se tiče kvalitete sintetiziranega govora in hitrosti generiranja odziva.
Keywords: globoko učenje, nevronska mreža, sinteza govora, umetna inteligenca, Pytorch, Tensorflow, Tacotron, Waveglow, Wavenet, WaveRNN
Published in DKUM: 18.10.2021; Views: 877; Downloads: 119
.pdf Full text (3,01 MB)

4.
Klasifikacija besedila s prenosnim učenjem : magistrsko delo
Jure Žerak, 2020, master's thesis

Abstract: Magistrsko delo ima namen preizkusiti metodo prenosnega učenja na obdelavi naravnega jezika in jo primerjati s klasičnimi metodami učenja nevronskih mrež, metodo LSTM. V delu sta uporabljena opisna metoda za teoretični in eksperiment za praktični del dela. V slednjem smo ugotovili, da je metoda prenosnega učenja na majhni količini podatkov bolj točna od klasičnih metod, vendar za to potrebuje več časa. Delo primerja prednaučeni model Bert in klasično metodo LSTM, zato je priporočljivo primerjati rezultate tudi z drugimi prednaučenimi modeli in klasičnimi metodami.
Keywords: nevronske mreže, prenosno učenje, NLP, PyTorch, LSTM
Published in DKUM: 01.12.2020; Views: 932; Downloads: 118
.pdf Full text (1,99 MB)

Search done in 0.09 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica