| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
K-vertex: a novel model for the cardinality constraints enforcement in graph databases : doctoral dissertation
Martina Šestak, 2022, doctoral dissertation

Abstract: The increasing number of network-shaped domains calls for the use of graph database technology, where there are continuous efforts to develop mechanisms to address domain challenges. Relationships as 'first-class citizens' in graph databases can play an important role in studying the structural and behavioural characteristics of the domain. In this dissertation, we focus on studying the cardinality constraints mechanism, which also exploits the edges of the underlying property graph. The results of our literature review indicate an obvious research gap when it comes to concepts and approaches for specifying and representing complex cardinality constraints for graph databases validated in practice. To address this gap, we present a novel and comprehensive approach called the k-vertex cardinality constraints model for enforcing higher-order cardinality constraints rules on edges, which capture domain-related business rules of varying complexity. In our formal k-vertex cardinality constraint concept definition, we go beyond simple patterns formed between two nodes and employ more complex structures such as hypernodes, which consist of nodes connected by edges. We formally introduce the concept of k-vertex cardinality constraints and their properties as well as the property graph-based model used for their representation. Our k-vertex model includes the k-vertex cardinality constraint specification by following a pre-defined syntax followed by a visual representation through a property graph-based data model and a set of algorithms for the implementation of basic operations relevant for working with k-vertex cardinality constraints. In the practical part of the dissertation, we evaluate the applicability of the k-vertex model on use cases by carrying two separate case studies where we present how the model can be implemented on fraud detection and data classification use cases. We build a set of relevant k-vertex cardinality constraints based on real data and explain how each step of our approach is to be done. The results obtained from the case studies prove that the k-vertex model is entirely suitable to represent complex business rules as cardinality constraints and can be used to enforce these cardinality constraints in real-world business scenarios. Next, we analyze the performance efficiency of our model on inserting new edges into graph databases with varying number of edges and outgoing node degree and compare it against the case when there is no cardinality constraints checking. The results of the statistical analysis confirm a stable performance of the k-vertex model on varying datasets when compared against a case with no cardinality constraints checking. The k-vertex model shows no significant performance effect on property graphs with varying complexity and it is able to serve as a cardinality constraints enforcement mechanism without large effects on the database performance.
Keywords: Graph database, K-vertex cardinality constraint, Cardinality, Business rule, Property graph data model, Property graph schema, Hypernode, Performance analysis, Fraud detection, Data classification
Published in DKUM: 10.08.2022; Views: 771; Downloads: 99
.pdf Full text (3,43 MB)

Search done in 0.05 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica