| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
The characterisation of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1-hexanol/water microemulsion
Vuk Uskoković, Mihael Drofenik, Irena Ban, 2004, original scientific article

Abstract: Stoichiometric nanocrystalline nickel-zinc ferrites were synthesized by a reverse micelle method following a multi-microemulsion approach. Different pH values were chosen for the alkali precipitating reaction during the synthesis of different powders. Synthesized, as-dried and subsequently calcined powders were characterized in terms of their magnetic properties. XRD analyses and specific-surface area measurements were used to determine the average particlesizes of the synthesized samples. DCS and TGA measurements were performed to reveal the phase transitions within the samples at elevated temperatures, whereas TEM was used to view and record the microstructure of the nanosized ferrite samples. A possible mechanism of the formation of the synthesized NiZn-ferrite was also discussed.
Keywords: magnetic materials, magnetic nanoparticles, microemulsion synthesis, nickel, iron, fine powders, Ni-Zn ferrites, reverse micelle method
Published: 01.06.2012; Views: 1410; Downloads: 23
URL Link to full text

2.
Subsolidus phase equilibria and the Li[sub]5Nd[sub]4FeO[sub]10 phase in the Li[sub]2O-Nd[sub]2O[sub]3-Fe[sub]2O[sub]3 system
Irena Ban, Mihael Drofenik, Danilo Suvorov, Darko Makovec, 2005, original scientific article

Abstract: A survey of the subsolidus phase equilibria in the system Li2O-Nd2O3-Fe2O3 wasmade at subsolidus temperatures in the range 1000-1050 °C. A ternary phase was identified. The phase is centered on Li5Nd4FeO10, with a cubic lattice a =11.9494 A. The compound melts incongruently at 1105 °C. The magnetic susceptibility was measured in the temperature range 4-300 K. The compound is paramagnetic in the temperature range 150-300 K and follows the Curie-Weiss law. At about TN = 10 K, a long-range magnetic ordering is observed.
Keywords: lithium ferrites, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, magnetic properties, phase equilibrium
Published: 01.06.2012; Views: 1600; Downloads: 23
URL Link to full text

Search done in 0.08 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica