1. Optimizing digital image quality for improved skin cancer detectionBogdan Dugonik, Marjan Golob, Marko Marhl, Aleksandra Vučinič Dugonik, 2025, original scientific article Abstract: The rising incidence of skin cancer, particularly melanoma, underscores the need for improved diagnostic tools in dermatology. Accurate imaging plays a crucial role in early detection, yet challenges related to color accuracy, image distortion, and resolution persist, leading to diagnostic errors. This study addresses these issues by evaluating color reproduction accuracy across various imaging devices and lighting conditions. Using a ColorChecker test chart, color deviations were measured through Euclidean distances (∆E*, ∆C*), and nonlinear color differences (∆E00, ∆C00), while the color rendering index (CRI) and television lighting consistency index (TLCI) were used to evaluate the influence of light sources on image accuracy. Significant color discrepancies were identified among mobile phones, DSLRs, and mirrorless cameras, with inadequate dermatoscope lighting systems contributing to further inaccuracies. We demonstrate practical applications, including manual camera adjustments, grayscale reference cards, post-processing techniques, and optimized lighting conditions, to improve color accuracy. This study provides applicable solutions for enhancing color accuracy in dermatological imaging, emphasizing the need for standardized calibration techniques and imaging protocols to improve diagnostic reliability, support AI-assisted skin cancer detection, and contribute to high-quality image databases for clinical and automated analysis. Keywords: dermoscopy, melanoma, color analysis, color error, spectral power distribution, grey card, digital imaging standards Published in DKUM: 08.04.2025; Views: 0; Downloads: 1
Full text (5,63 MB) |
2. Integrating live cell calcium imaging and tissue damage assessment in a novel model of acute pancreatitisPolona Kovačič, Maša Skelin, Eva Paradiž, Viktória Venglovecz, Loránd Kiss, Gabriella Mihalekné Fűr, Andraž Stožer, Jurij Dolenšek, 2025, published scientific conference contribution abstract Keywords: acute pancreatitis, calcium imaging, LiveDead assay, pancreatic tissue slices, histological analysis Published in DKUM: 31.03.2025; Views: 0; Downloads: 5
Full text (2,28 MB) This document has many files! More... |
3. |
4. Ultrafast multicellular calcium imaging of calcium spikes in mouse beta cells in tissue slicesJurij Dolenšek, Viljem Pohorec, Maša Skelin, Marko Gosak, Andraž Stožer, 2025, original scientific article Abstract: Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings. Methods: Since multicellular calcium imaging of spikes would enable a better understanding of coupling between changes in membrane potential and calcium concentration in beta cell collectives, we set out to design an appropriate methodological approach. Results: Combining the acute tissue slice method with ultrafast calcium imaging, we were able to resolve and quantify individual spikes within bursts at a temporal resolution of >150 Hz over prolonged periods, as well as describe their glucose-dependent properties. In addition, by simultaneous patch-clamp recordings we were able to show that calcium spikes closely follow membrane potential changes. Both bursts and spikes coordinate across islets in the form of intercellular waves, with bursts typically displaying global and spikes more local patterns. Conclusions: This method and the associated findings provide additional insight into the complex signaling within beta cell networks. Once extended to tissue from diabetic animals and human donors, this approach could help us better understand the mechanistic basis of diabetes and find new molecular targets. Keywords: beta cell, calcium imaging, calcium oscillations, calcium spikes, physiology Published in DKUM: 24.01.2025; Views: 0; Downloads: 7
Full text (9,70 MB) This document has many files! More... |
5. From isles of Königsberg to islets of Langerhans: examining the function of the endocrine pancreas through network scienceAndraž Stožer, Marko Šterk, Eva Paradiž, Rene Markovič, Maša Skelin, Cara E. Ellis, Lidija Križančić Bombek, Jurij Dolenšek, Patrick E. MacDonald, Marko Gosak, 2022, review article Abstract: Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus. Keywords: pancreatic islets, beta cells, calcium imaging, intercellular communication, functional networks, multilayer networks Published in DKUM: 20.12.2024; Views: 0; Downloads: 74
Full text (14,78 MB) This document has many files! More... |
6. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slicesAndraž Stožer, Maša Skelin, Marko Gosak, Lidija Križančić Bombek, Viljem Pohorec, Marjan Rupnik, Jurij Dolenšek, 2021, original scientific article Abstract: Many details of glucose-stimulated intracellular calcium changes in [beta] cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on [beta] cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.
NEW & NOTEWORTHY: We assessed concentration-dependence in coupled [beta] cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses. Keywords: beta cells, calcium imaging, glucose-dependence, network analysis Published in DKUM: 15.10.2024; Views: 0; Downloads: 18
Full text (4,37 MB) This document has many files! More... |
7. Background purification framework with extended morphological attribute profile for hyperspectral anomaly detectionJu Huang, Kang Liu, Mingliang Xu, Matjaž Perc, Xuelong Li, 2021, original scientific article Abstract: Hyperspectral anomaly detection has attracted extensive interests for its wide use in military and civilian fields, and three main categories of detection methods have been developed successively over past few decades, including statistical model-based, representation-based, and deep-learning-based methods. Most of these algorithms are essentially trying to construct proper background profiles, which describe the characteristics of background and then identify the pixels that do not conform to the profiles as anomalies. Apparently, the crucial issue is how to build an accurate background profile; however, the background profiles constructed by existing methods are not accurate enough. In this article, a novel and universal background purification framework with extended morphological attribute profiles is proposed. It explores the spatial characteristic of image and removes suspect anomaly pixels from the image to obtain a purified background. Moreover, three detectors with this framework covering different categories are also developed. The experiments implemented on four real hyperspectral images demonstrate that the background purification framework is effective, universal, and suitable. Furthermore, compared with other popular algorithms, the detectors with the framework perform well in terms of accuracy and efficiency. Keywords: detectors, anomaly detection, image reconstruction, hyperspectral imaging, training, optics, dictionaries, background purification, extended attribute profile, sparse representation, stacked autoencoder Published in DKUM: 19.08.2024; Views: 92; Downloads: 9
Full text (5,36 MB) This document has many files! More... |
8. Glucose-stimulated calcium dynamics in beta cells from male C57BL/6J, C57BL/6N, and NMRI mice : a comparison of activation, activity, and deactivation properties in tissue slicesViljem Pohorec, Lidija Križančić Bombek, Maša Skelin, Jurij Dolenšek, Andraž Stožer, 2022, original scientific article Abstract: Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between C57BL/6J, C57BL/6N, and NMRI mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease in tissue slices. Keywords: beta cell, mouse models, calcium imaging, glucose-dependence, tissue slice Published in DKUM: 15.07.2024; Views: 148; Downloads: 22
Full text (4,45 MB) This document has many files! More... |
9. Assessing different temporal scales of calcium dynamics in networks of beta cell populationsJan Zmazek, Maša Skelin, Rene Markovič, Jurij Dolenšek, Marko Marhl, Andraž Stožer, Marko Gosak, 2021, original scientific article Abstract: Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components.How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue
slices with time series analysis and network science approaches to unveil the glucosedependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow
component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms
shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks. Keywords: islets of Langerhans, beta cell network, calcium oscillations, multimodal activity analysis, confocal imaging, functional connectivity, multiplex network Published in DKUM: 06.06.2024; Views: 171; Downloads: 6
Full text (9,40 MB) This document has many files! More... |
10. The effect of forskolin and the role of Epac2A during activation, activity, and deactivation of beta cell networksMaša Skelin, Jurij Dolenšek, Lidija Križančić Bombek, Viljem Pohorec, Marko Gosak, Marjan Rupnik, Andraž Stožer, 2023, original scientific article Abstract: Beta cells couple stimulation by glucose with insulin secretion and impairments in this coupling play a central role in diabetes mellitus. Cyclic adenosine monophosphate (cAMP) amplifies stimulus-secretion coupling via protein kinase A and guanine nucleotide exchange protein 2 (Epac2A). With the present research, we aimed to clarify the influence of cAMP-elevating diterpene forskolin on cytoplasmic calcium dynamics and intercellular network activity, which are two of the crucial elements of normal beta cell stimulus-secretion coupling, and the role of Epac2A under normal and stimulated conditions. To this end, we performed functional multicellular calcium imaging of beta cells in mouse pancreas tissue slices after stimulation with glucose and forskolin in wild-type and Epac2A knock-out mice. Forskolin evoked calcium signals in otherwise substimulatory glucose and beta cells from Epac2A knock-out mice displayed a faster activation. During the plateau phase, beta cells from Epac2A knock-out mice displayed a slightly higher active time in response to glucose compared with wild-type littermates, and stimulation with forskolin increased the active time via an increase in oscillation frequency and a decrease in oscillation duration in both Epac2A knock-out and wild-type mice. Functional network properties during stimulation with glucose did not differ in Epac2A knock-out mice, but the presence of Epac2A was crucial for the protective effect of stimulation with forskolin in preventing a decline in beta cell functional connectivity with time. Finally, stimulation with forskolin prolonged beta cell activity during deactivation, especially in Epac2A knock-out mice. Keywords: pancreas, tissue slices, beta cells, calcium imaging, amplifying pathway, forskolin, Epac2A KO, intercellular network Published in DKUM: 27.05.2024; Views: 193; Downloads: 14
Full text (12,03 MB) This document has many files! More... |