| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
High strain-rate deformation analysis of open-cell aluminium foam
Anja Mauko, Mustafa Sarıkaya, Mustafa Güden, Isabel Duarte, Matej Borovinšek, Matej Vesenjak, Zoran Ren, 2023, original scientific article

Abstract: This study investigated the high-strain rate mechanical properties of open-cell aluminium foam M-pore®. While previous research has examined the response of this type of foam under quasi-static and transitional dynamic loading conditions, there is a lack of knowledge about its behaviour under higher strain rates (transitional and shock loading regimes). To address this gap in understanding, cylindrical open-cell foam specimens were tested using a modified Direct Impact Hopkinson Bar (DIHB) apparatus over a wide range of strain rates, up to 93 m/s. The results showed a strong dependency of the foam's behaviour on the loading rate, with increased plateau stress and changes in deformation front formation and propagation at higher strain rates. The internal structure of the specimens was examined using X-ray micro-computed tomography (mCT). The mCT images were used to build simplified 3D numerical models of analysed aluminium foam specimens that were used in computational simulations of their behaviour under all experimentally tested loading regimes using LS-DYNA software. The overall agreement between the experimental and computational results was good enough to validate the built numerical models capable of correctly simulating the mechanical response of analysed aluminium foam at different loading rates.
Keywords: Open-cell aluminium foam, Micro-computed tomography, High-strain rate, Direct impact hopkinson bar, Digital image correlation, Computer simulation
Published in DKUM: 06.12.2023; Views: 359; Downloads: 28
.pdf Full text (3,28 MB)
This document has many files! More...

2.
Characterization of heterogeneous arc welds through miniature tensile testing and Vickers-hardness mapping
Stijn Hertelé, Jonas Bally, Nenad Gubeljak, Primož Štefane, Patricia Verleysen, Wim De Waele, 2016, original scientific article

Abstract: The heterogeneity of arc-welded connections is often ignored in structural assessments, giving rise to inaccuracies. Improved assessments taking into account heterogeneity require the characterization of local constitutive properties. We have compared two methods to do this: Vickers-hardness mapping and miniature tensile testing. Whereas the former is more straightforward to apply, the latter provides full-range stress-strain data. This paper discusses an experimental comparison of both methods on a heterogeneous arc weld. Miniature tensile tests were performed, using digital image correlation to measure the strain. The specimens were indented to compare their stress-strain response with Vickers hardness. Notwithstanding that small natural flaws invalidated some tests, reliable stress-strain curves were obtained. Vickers hardness testing is a convenient alternative if the yield and ultimate tensile strength are the only points of interest and the corresponding conversion inaccuracy is acceptable.
Keywords: arc weld, heterogeneity, hardness, miniature tensile testing, digital image correlation
Published in DKUM: 14.03.2017; Views: 1265; Downloads: 421
.pdf Full text (797,43 KB)
This document has many files! More...

Search done in 4.06 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica