1. Derivation of analytical expressions for fast calculation of resistance spot welding system currentsRobert Brezovnik, Jožef Ritonja, 2024, original scientific article Abstract: The paper deals with the dynamics of a resistance spot welding system. At the core of this system is a transformer, which is powered on the primary side by a pulse-width modulated inverter and has a full-wave output rectifier on the secondary side that provides a direct welding current. The entire system is nonlinear, due to magnetic hysteresis and electronics. The electronics prevent the current from flowing in all parts of the welding transformer at separate time intervals during the voltage supply period; therefore, not all the parameters affect the dynamic of currents and voltages all the time so the system is also time-variant. To design a high-performance welding system and to predict the maximum possible welding current at a specific load, it is necessary to know the welding and primary currents. The leakage inductances of the system can reduce the maximum welding current significantly at higher frequencies and the same load. There are several methods to determine these currents, each with its drawbacks. Measurements are time-consuming, using professional software is expensive and requires time to learn and free open-source software has many limitations and does not guarantee the correctness of the results. The article presents a new, fourth option—a theoretical derivation of analytical expressions that facilitate straightforward and rapid calculation of the welding and primary currents of the resistance spot welding system with symmetrical secondary branches. The derivation of the mathematical expressions is based on the equivalent circuits that describe the system in different operating states. The results of the numerical simulations confirmed the derived expressions completely. Keywords: DC–DC converters, pulse width modulation (PWM), welding transformers, center-tapped transformers, full-wave rectifier, resistance spot welding (RSW), leakage inductance, analytical modeling, time-variant system, equivalent circuit Published in DKUM: 08.08.2024; Views: 77; Downloads: 17 Full text (6,72 MB) |
2. Recent advances in the development of automotive catalytic converters: a systematic reviewLaura Robles-Lorite, Ruben Dorado Vicente, Eloisa Torres Jiménez, Gorazd Bombek, Luka Lešnik, 2023, review article Abstract: Despite the current boost in the use of electric vehicles to reduce the automotive sector’s footprint, combustion vehicles are and will be present in our cities in both the immediate and long term. In this sense, catalytic converters, which are exhaust gas post-treatment systems for vehicle emission control, are critical for complying with increasingly stringent environmental regulations. This work proposes a systematic review to identify the most relevant knowledge regarding the parameters (materials, geometries, and engine conditions), conditions (cold start, oxygen storage, and deactivation), and mathematical models to consider in the design of catalytic converters. The Scopus database contains 283 records related to this review’s objective. After applying the inclusion and exclusion criteria, 65 reports were retrieved for evaluation. A table was created to present the results and prepare this manuscript. The evaluation revealed that the following topics were active: the study of non-noble catalyst materials, as well as new substrate materials and geometries, for designing more compact and cost-effective catalytic converters; the development of strategies to improve conversion during cold starts; and the development of accurate and fast estimation models. Keywords: automotive converters, catalytic converters, emissions reduction, exhaust gas post-treatment, catalyst deactivation, oxygen storage, numerical models Published in DKUM: 06.09.2023; Views: 453; Downloads: 34 Full text (532,89 KB) This document has many files! More... |
3. MOS-FET as a current sensor in power electronics convertersRok Pajer, Miro Milanovič, Branko Premzel, Miran Rodič, 2015, original scientific article Abstract: This paper presents a current sensing principle appropriate for use in power electronics’ converters. This current measurement principle has been developed for metal oxide semiconductor field effect transistor (MOS-FET) and is based on UDS voltage measurement. In practice, shunt resistors and Hall effect sensors are usually used for these purposes, but the presented principle has many advantages. There is no need for additional circuit elements within high current paths, causing parasitic inductances and increased production complexity. The temperature dependence of MOS-FETs conductive resistance RDS−ON is considered in order to achieve the appropriate measurement accuracy. The “MOS-FET sensor” is also accompanied by a signal acquisition electronics circuit with an appropriate frequency bandwidth. The obtained analogue signal is therefore interposed to an A-D converter for further data acquisition. In order to achieve sufficient accuracy, a temperature compensation and appropriate approximation is used (RDS−ON = RDS−ON(Vj)). The MOS-FET sensor is calibrated according to a reference sensor based on the Hall-effect principle. The program algorithm is executed on 32-bit ARM M4 MCU, STM32F407. Keywords: power electronics, converters, MOS-FET, current measurement, thermal model Published in DKUM: 22.06.2017; Views: 1467; Downloads: 365 Full text (1,32 MB) This document has many files! More... |
4. SOFT SWITCHING FOR IMPROVING THE EFFICIENCY AND POWER DENSITY OF A SINGLE-PHASE CONVERTER WITH POWER FACTOR CORRECTIONTine Konjedic, 2015, doctoral dissertation Abstract: This thesis investigates the possibilities for increasing the power conversion efficiency and power density of a single-phase single-stage AC-DC converter with power factor correction capability. Initially, the limitations are investigated for simultaneous increase of power density and efficiency in hard switched bidirectional converters. The switching frequency dependent turn-on losses of the transistors have been identified as the main limiting factor. In order to avoid the increase in total power losses with increasing the switching frequency, a control approach is proposed for achieving zero voltage switching transitions within the entire operating range of a bidirectional converter that utilizes power transistors in a bridge structure. This approach is based on operation in the discontinuous conduction mode with a variable switching frequency. Operation in the discontinuous conduction mode ensures the necessary reversed current that naturally discharges the parasitic output capacitance of the transistor and thus allows this transistor to be turned on at zero voltage. On the other hand, the varying switching frequency ensures that the converter operates close to the zero voltage switching boundary, which is defined as the minimum required current ripple at which zero voltage switching can be maintained. Operation with the minimum required current ripple is desirable as it generates the lowest magnetic core losses and conduction losses within the power circuit.
The performance and effectiveness of the investigated approach were initially verified in a bidirectional DC-DC converter. A reliable zero voltage switching was confirmed over the entire operating range of a bidirectional DC-DC converter, as well as the absence of the reverse recovery effect and the unwanted turn-on of the synchronous transistor. In order to justify its usage and demonstrate its superior performance, the proposed zero voltage switching technique was compared with a conventional continuous conduction mode operation which is characterized by hard switching commutations. After successful verification and implementation in a bidirectional DC-DC converter, the investigated zero voltage switching approach was adapted for usage in an interleaved DC-AC converter with power factor correction capability. Comprehensive analysis of the converter's operation in discontinuous conduction mode with a variable switching frequency was performed in order to derive its power loss model. The latter facilitated the design process of the converter's power circuit. A systematic approach for selecting the converter's power components has been used while targeting for an extremely high power conversion efficiency over a wide operating range and a low volume design of the converter.
The final result of the investigations performed within the scope of this thesis is the interleaved AC-DC converter with power factor correction capability. Utilization of interleaving allows for increasing the converter's power processing capability, reduces the conducted differential mode noise and shrinks the range within which the switching frequency has to vary. The proposed zero voltage switching control approach was entirely implemented within a digital signal controller and does not require any additional components within the converter's circuit. The experimental results have confirmed highly efficient operation over a wide range of operating powers. A peak efficiency of 98.4 % has been achieved at the output power of 1100 W, while the efficiency is maintained above 97 % over the entire range of output powers between 200 W and 3050 W. Keywords: zero-voltage switching, power factor correction, variable switching frequency, discontinuous conduction mode, reverse recovery, unwanted turn-on, bidirectional DC-DC converter, bidirectional AC-DC converter, control of switching power converters Published in DKUM: 13.10.2015; Views: 2269; Downloads: 241 Full text (23,37 MB) |
5. Reconfigurable digital controller for a buck converter based on FPGAMiro Milanovič, Mitja Truntič, Primož Šlibar, Drago Dolinar, 2007, original scientific article Abstract: This paper presents a complete digitally controlled dc-dc buck converter performed by FPGA circuitry. All tasks, analog to digital conversion, control algorithm and pulse width modulation, were implemented in the FPGA. This approach enables high-speed dynamic response and programmability by the controller, without external passive components. In addition, the controller's structure can be easily changed with out external components. The applied algorithm enables a switching frequency of 100 kHz. Keywords: converters, digital controllers, FPGA Published in DKUM: 01.06.2012; Views: 1934; Downloads: 102 Link to full text |
6. |