| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Region segmentation of images based on a raster-scan paradigm
Luka Lukač, Andrej Nerat, Damjan Strnad, Štefan Horvat, Borut Žalik, 2024, original scientific article

Abstract: This paper introduces a new method for the region segmentation of images. The approach is based on the raster-scan paradigm and builds the segments incrementally. The pixels are processed in the raster-scan order, while the construction of the segments is based on a distance metric in regard to the already segmented pixels in the neighbourhood. The segmentation procedure operates in linear time according to the total number of pixels. The proposed method, named the RSM (raster-scan segmentation method), was tested on selected images from the popular benchmark datasets MS COCO and DIV2K. The experimental results indicate that our method successfully extracts regions with similar pixel values. Furthermore, a comparison with two of the well-known segmentation methods—Watershed and DBSCAN—demonstrates that the proposed approach is superior in regard to efficiency while yielding visually similar results.
Keywords: segment, image analysis, distance metric, Watershed, DBSCAN
Published in DKUM: 05.12.2024; Views: 0; Downloads: 2
URL Link to file

2.
GRUČENJE PODATKOV LiDAR
Boštjan Založnik, 2014, undergraduate thesis

Abstract: Cilje diplomske naloge je raziskati možnosti uporabe algoritmov gručenja za obdelavo podatkov LiDAR. Prvi del diplomske naloge predstavlja podatke LiDAR in algoritme gručenja. S senzorji LiDAR, pritrjenimi na letala ali helikopterje, je omogočeno hitro in natančno modeliranje površja. Metode gručenje predstavljajo enega izmed pristopov za detekcijo objektov na površju. Gručenje je vrsta nenadzorovane klasifikacije podatkov. Za učinkovito implementacijo algoritmov gručenja so potrebne posebne podatkovne strukture. Pri diplomski nalogi uporabljamo drevesa KD. V drugem delu diplomske naloge predstavimo aplikacijo. Pripravi podatkov s predobdelavo sledi uporaba algoritma DBSCAN za iskanje zgradb in cest. Za iskanje dreves smo uporabili algoritem k-means. V zaključku podamo rezultate in uporabljene parametre.
Keywords: algoritmi gručenja, k-means, DBSCAN, iskanje zgradb, iskanje cest, iskanje drevesnih krošenj, podatki LiDAR
Published in DKUM: 20.05.2014; Views: 1793; Downloads: 198
.pdf Full text (5,21 MB)

Search done in 0.09 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica