| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Parameterization based shape optimization : theory and practical implementation aspects
Marko Kegl, 2005, original scientific article

Abstract: This paper presents an approach to parameterization based shape optimization of statically loaded elastic structures. The shape parameterization is based on the design element technique and a rational Bezicr body is used to serve as the design element. Practical implementation issues related to the introduction of design variables are discussed briefly. The design sensitivity calculation is based on the discrete approach. The proposed solution process layout is based on a stand-alone optimization program which makes use of compatiblc analysis programs called simulators. For illustrationpurpose an example problem containing shape and sizing design variables is formulated and solved. The range of use of the proposed approachis illustrated with three further examples.
Keywords: mechanics, structure parameterization, shape optimal design, finite element mesh, body parameterization, design element, Bezier body
Published in DKUM: 01.06.2012; Views: 2028; Downloads: 78
URL Link to full text

2.
Shape optimization of truss-stiffened shell structures with variable thickness
Marko Kegl, Boštjan Brank, 2006, original scientific article

Abstract: This paper presents an effective approach to shape optimal design of statically loaded elastic shell-like structures. The shape parametrization is based on a design element technique. The chosen design element is a rational Bézier body, enhanced with a smoothly varying scalar field. A body-like designelement makes possible to unify the shape optimization of both pure shells and truss-stiffened shell structures. The scalar field of the design element is obtained by attaching to each control point a scalar quantity, which is an add-on to the position and weight of the control point. This scalar field is linked to the shell thickness distribution, which can be optimized simultaneously with the shape of the shell. For linear and non-linear analysis of shell structures, a reliable 4-node shell finite element formulation is utilized. The presented optimization approach assumes the employment of a gradient-based optimization algorithm and the use of the discrete method of direct differentiation to perform the sensitivity analysis.Four numerical examples of shell and truss-stiffened shell optimization are presented in detail to illustrate the performance of the proposed approach.
Keywords: mechanics of structures, shape optimization, shells, trusses, Bézier body, numerical methods, optimum design
Published in DKUM: 30.05.2012; Views: 2136; Downloads: 123
URL Link to full text

Search done in 0.02 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica