| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 13
First pagePrevious page12Next pageLast page
1.
Electrochemical capacitance of CNF–Ti3C2Tx MXene-based composite cryogels in different electrolyte solutions for an eco-friendly supercapacitor
Vanja Kokol, Subramanian Lakshmanan, Vera Vivod, 2025, original scientific article

Abstract: Cellulose nanofibrils (CNFs) are promising materials for flexible and green supercapacitor electrodes, while Ti3C2Tx MXene exhibits high specific capacitance. However, the diffusion limitation of ions and chemical instability in the generally used highly basic (KOH, MXene oxidation) or acidic (H2SO4, CNF degradation) electrolytes limits their performance and durability. Herein, freestanding CNF/MXene cryogel membranes were prepared by deep freeze-casting (at −50 and −80 ◦C), using different weight percentages of components (10, 50, 90), and evaluated for their structural and physico-chemical stability in other less aggressive aqueous electrolyte solutions (Na2/Mg/Mn/K2-SO4, Na2CO3), to examine the influence of the ions transport on their pseudocapacitive properties. While the membrane prepared with 50 wt% (2.5 mg/cm2 ) of MXene loading at −80 ◦C shrank in a basic Na2CO3 electrolyte, the capacitance was performed via the forming of an electroactive layer on its interface, giving it high stability (90% after 3 days of cycling) but lower capacitance (8 F/g at 2 mV/s) than in H2SO4 (25 F/g). On the contrary, slightly acidic electrolytes extended the cations’ transport path due to excessive but still size-limited diffusion of the hydrated ions (SO4 2− > Na+ > Mn2+ > Mg2+) during membrane swelling, which blocked it, reducing the electroactive surface area and lowering conductivities (<3 F/g).
Keywords: cellulose nanofibrils, Ti3C2Tx MXene, freeze-casting, aqueous electrolytes, physico-chemical properties, electric double layer, pseudocapacitance
Published in DKUM: 07.04.2025; Views: 0; Downloads: 5
.pdf Full text (7,94 MB)
This document has many files! More...

2.
Slot‑die coating of cellulose nanocrystals and chitosan for improved barrier properties of paper
Ylenia Ruberto, Vera Vivod, Janja Juhant Grkman, Gregor Lavrič, Claudia Graiff, Vanja Kokol, 2024, original scientific article

Abstract: Cellulose nanocrystals (CNCs) and chitosan (Cht) have been studied extensively for oxygen and water vapour barrier coatings in biodegradable, compostable or recyclable paper packaging. However, rare studies have been performed by using scalable, inexpensive, and fast continuous slot-die coating processes, and none yet in combination with fast' and high-throughput near-infrared (NIR) light energy drying. In this frame, we studied the feasibility of a moderately concentrated (11 wt%) anionic CNC and (2 wt%) cationic Cht coating (both containing 20 wt% sorbitol related to the weight of CNC/Cht), by using plain and pigment pre-treated papers. The effect of coating parameters (injection speed, dry thickness settings) were investigated on coating quantity (dry weight, thickness) and homogeneity (coverage), papers' structure (thickness, grammage, density), whiteness, surface wettability, barrier (air, oxygen and water vapour) properties and adhesion (surface strength). The coating homogeneity was dependent primarily on the suspensions' viscosity, and secondarily on the applied coating parameters, whereby CNCs could be applied at 1–2 times higher injection speeds (up to 80 mL/min) and versatile coating weights, but required a relatively longer time to dry. The CNCs thus exhibited outstanding air (4.2–1.5 nm/Pa s) and oxygen (2.7–1.1 cm3 mm/m2 d kPa) barrier performance at 50% RH and 22–33 g/m2 deposition, whereas on top deposited Cht (3–4 g/m2) reduced its wetting time and improved the water vapour barrier (0.23–0.28 g mm/m2 d Pa). The balanced barrier properties were achieved due to the polar characteristic of CNCs, the hydrophobic nature of Cht and the quantity of the applied bilayer coating that can provide sustainable paper-based packaging.
Keywords: paper, nanocellulose, chitosan, slot‑die coating, near-infrared (NIR) drying, barrier properties
Published in DKUM: 06.05.2024; Views: 227; Downloads: 18
.pdf Full text (1,59 MB)
This document has many files! More...

3.
Cationised fibre-based cellulose multi-layer membranes for sterile and high-flow bacteria retention and inactivation
Vanja Kokol, Monika Kos, Vera Vivod, Nina Gunde-Cimerman, 2023, original scientific article

Abstract: Low-cost, readily available, or even disposable membranes in water purification or downstream biopharma processes are becoming attractive alternatives to expensive polymeric columns or filters. In this article, the potential of microfiltration membranes prepared from differently orientated viscose fibre slivers, infused with ultrafine quaternised (qCNF) and amino-hydrophobised (aCNF) cellulose nanofibrils, were investigated for capturing and deactivating the bacteria from water during vacuum filtration. The morphology and capturing mechanism of the single- and multi-layer structured membranes were evaluated using microscopic imaging and colloidal particles. They were assessed for antibacterial efficacy and the retention of selected bacterial species (Escherichia coli, Staphylococcus aureus, Micrococcus luteus), differing in the cell envelope structure, hydrodynamic biovolume (shape and size) and their clustering. The aCNF increased biocidal efficacy significantly when compared to qCNF-integrated membrane, although the latter retained bacteria equally effectively by a thicker multi-layer structured membrane. The retention of bacterial cells occurred through electrostatic and hydrophobic interactions, as well as via interfibrous pore diffusion, depending on their physicochemical properties. For all bacterial strains, the highest retention (up to 100% or log 6 reduction) at >50 L/h∗bar∗m2 flow rate was achieved with a 4-layer gradient-structured membrane containing different aCNF content, thereby matching the performance of industrial polymeric filters used for removing bacteria.
Keywords: fibrous membrane, cationised cellulose nanofibrils, amino-hydrophobised cellulose nanofibrils, antibacterial activity, multi-layer structure, flux, bacteria retention
Published in DKUM: 28.03.2024; Views: 220; Downloads: 12
.pdf Full text (3,99 MB)
This document has many files! More...

4.
5.
6.
7.
Biodegradation of natural textile materials in soil
Khubaib Arshad, Mikael Skrifvars, Vera Vivod, Julija Volmajer Valh, Bojana Vončina, 2014, original scientific article

Abstract: World is facing numerous environmental challenges, one of them being the increasing pollution both in the atmosphere and landfills. After the goods have been used, they are either buried or burnt. Both ways of disposal are detrimental and hazardous to the environment. The term biodegradation is becoming more and more important, as it converts materials into water, carbon dioxide and biomass, which present no harm to the environment. Nowadays, a lot of research is performed on the development of biodegradable polymers, which can “vanish” from the Earth surface after being used. In this respect, this research work was conducted in order to study the biodegradation phenomenon of cellulosic and non-cellulosic textile materials when buried in soil, for them to be used in our daily lives with maximum efficiency and after their use, to be disposed of easily with no harmful effects to the environment. This research indicates the time span of the use life of various cellulosic and non-cellulosic materials such as cotton, jute, linen, flax, wool when used for the reinforcement of soil. The visual observations and applied microscopic methods revealed that the biodegradation of cellulose textile materials proceeded in a similar way as for non-cellulosic materials, the only difference being the time of biodegradation. The non-cellulosic textile material (wool) was relatively more resistant to microorganisms due to its molecular structure and surface.
Keywords: biodegradation, composting, natural textile materials, FT-IR
Published in DKUM: 21.12.2015; Views: 1431; Downloads: 415
.pdf Full text (1,41 MB)
This document has many files! More...

8.
Cyclodextrins in textile finishing
Bojana Vončina, Vera Vivod, 2013, independent scientific component part or a chapter in a monograph

Keywords: ciklodekstrini, oplemenitenje tekstilij, antimikrobne lastnosti, ognjevarna apretura
Published in DKUM: 10.07.2015; Views: 1556; Downloads: 90
URL Link to full text

9.
10.
[Beta]-cyclodextrin as a retarding reagent in polyacrylonitrile dyeing
Bojana Vončina, Vera Vivod, Darja Jaušovec, 2007, original scientific article

Abstract: ß-Cyclodextrin was tested as a dye complexing agent - as a dye retardant in the dyeing of PAN fibres with cationic dyes. Significant improvement of colouruniformity and some improvements in colour depth were observed when PAN fibres were dyed in the presence of ß-cyclodextrin as compared to dyeing in the presence of a commercial retardant.
Keywords: textile dyeing, cationic dyes, cyclodextrin, polyacrylonitrile fibres, complexation
Published in DKUM: 01.06.2012; Views: 2066; Downloads: 39
URL Link to full text

Search done in 0.18 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica