| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
Autapse-induced multiple coherence resonance in single neurons and neuronal networks
Ergin Yilmaz, Mahmut Özer, Veli Baysal, Matjaž Perc, 2016, original scientific article

Abstract: We study the effects of electrical and chemical autapse on the temporal coherence or firing regularity of single stochastic Hodgkin-Huxley neurons and scale-free neuronal networks. Also, we study the effects of chemical autapse on the occurrence of spatial synchronization in scale-free neuronal networks. Irrespective of the type of autapse, we observe autaptic time delay induced multiple coherence resonance for appropriately tuned autaptic conductance levels in single neurons. More precisely, we show that in the presence of an electrical autapse, there is an optimal intensity of channel noise inducing the multiple coherence resonance, whereas in the presence of chemical autapse the occurrence of multiple coherence resonance is less sensitive to the channel noise intensity. At the network level, we find autaptic time delay induced multiple coherence resonance and synchronization transitions, occurring at approximately the same delay lengths. We show that these two phenomena can arise only at a specific range of the coupling strength, and that they can be observed independently of the average degree of the network.
Keywords: neuronal dynamics, autapse, coherence resonance, scale-free network
Published in DKUM: 23.06.2017; Views: 1161; Downloads: 437
.pdf Full text (1,63 MB)
This document has many files! More...

Search done in 1.17 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica