| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 10 / 24
First pagePrevious page123Next pageLast page
Use of AFM force spectroscopy for assessment of polymer response to conditions similar to the wound, during healing
Uroš Maver, Tina Maver, Andrej Žnidaršič, Zdenka Peršin, Miran Gaberšček, Karin Stana-Kleinschek, 2011, original scientific article

Abstract: Force spectroscopy is a very promising technique for the evaluation of interactions within different environments. Knowledge about them is especially important during the design and preparation of those modern wound dressings in contact with a changing wound-environment over a prolonged time. Such exposure can cause a drastic decrease in the materialćs mechanical performance, and can lead to degradation, thus lowering the success of any healing process. Our study tries to establish a model system, which would enable us to assess the applicability of the mentioned technique for the evaluation of any interaction changes between polymer molecules and a chosen surface, after exposure to different environments. Our proposed experimental setup consists of two representative polymers, a model silicon surface, and two solutions of various pHs and ionic strengths, respectively. Within the chosen range of parameters, we are confident that we can prove the usefulness of force spectroscopy for further research into polymer suitability, for the development of novel wound dressings.
Keywords: force spectroscopy, AFM, wound dressings, polymer materials, model system
Published: 01.06.2012; Views: 1120; Downloads: 54
.pdf Full text (316,48 KB)
This document has many files! More...

Skin cancer and its treatment
Kristjan Orthaber, Matevž Pristovnik, Kristijan Skok, Barbara Perić, Uroš Maver, 2017, review article

Abstract: The life expectancy in the Western world is increasing for a long time, which is the courtesy of a higher life standard, a more thorough hygiene, and, of course, the progress of modern medicine. Nevertheless, one of the illnesses that still proves to be a great challenge regardless of the recent advancements in medicine is cancer. Skin cancer is, according to theWorld Health Organization, the most common malignancy for the white population.The beginning of the paper offers a brief overview of the latest available information concerning epidemiology, aetiology, diagnostics, and treatment options for skin cancer, whereas the rest of the article deals with modern approaches to skin cancer treatment, highlighting recent development of nanotechnology based treatment approaches. Among these, we focus especially on the newest nanotechnological approaches combined with chemotherapy, a field which specialises in target specificity, drug release control, and real time monitoring with the goal being to diminish unwanted side effects and their severity, achieving a cheaper treatment and a generally more efficient chemotherapy. The field of nanotechnology is a rapidly developing one, judging by already approved clinical studies or by new theranostic agents that combine both the therapeutic and diagnostic modalities.
Keywords: skin cancer, treatment, nanotechnology, nanotechnological methods
Published: 14.06.2017; Views: 329; Downloads: 48
.pdf Full text (1,56 MB)
This document has many files! More...

Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications
Matjaž Finšgar, Amra Perva-Uzunalić, Janja Stergar, Lidija Gradišnik, Uroš Maver, 2016, original scientific article

Abstract: Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys.
Keywords: corrosion, corrosion resistance, chitosan, biocompatibility, biomaterials, biomedical materials, coatings, stainless steel
Published: 23.06.2017; Views: 632; Downloads: 205
.pdf Full text (2,73 MB)
This document has many files! More...

Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration
Jakob Naranđa, Maja Sušec, Uroš Maver, Lidija Gradišnik, Mario Gorenjak, Andreja Vukasović, Alan Ivković, Marjan Rupnik, Matjaž Vogrin, Peter Krajnc, 2016, original scientific article

Abstract: Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50–170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation.
Keywords: polyester, polymerization, polyHIPE
Published: 23.06.2017; Views: 663; Downloads: 241
.pdf Full text (1,24 MB)
This document has many files! More...

Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA)
Jakob Naranđa, Lidija Gradišnik, Mario Gorenjak, Matjaž Vogrin, Uroš Maver, 2017, original scientific article

Abstract: BACKGROUND: Cartilage tissue engineering is a fast-evolving field of biomedical engineering, in which the chondrocytes represent the most commonly used cell type. Since research in tissue engineering always consumes a lot of cells, simple and cheap isolation methods could form a powerful basis to boost such studies and enable their faster progress to the clinics. Isolated chondrocytes can be used for autologous chondrocyte implantation in cartilage repair, and are the base for valuable models to investigate cartilage phenotype preservation, as well as enable studies of molecular features, nature and scales of cellular responses to alterations in the cartilage tissue. METHODS: Isolation and consequent cultivation of primary human adult articular chondrocytes from the surgical waste obtained during total knee arthroplasty (TKA) was performed. To evaluate the chondrogenic potential of the isolated cells, gene expression of collagen type 2 (COL2), collagen 1 (COL1) and aggrecan (ACAN) was evaluated. Immunocytochemical staining of all mentioned proteins was performed to evaluate chondrocyte specific production. RESULTS: Cartilage specific gene expression of COL2 and ACAN has been shown that the proposed protocol leads to isolation of cells with a high chondrogenic potential, possibly even specific phenotype preservation up to the second passage. COL1 expression has confirmed the tendency of the isolated cells dedifferentiation into a fibroblast-like phenotype already in the second passage, which confirms previous findings that higher passages should be used with care in cartilage tissue engineering. To evaluate the effectiveness of our approach, immunocytochemical staining of the evaluated chondrocyte specific products was performed as well. DISCUSSION: In this study, we developed a protocol for isolation and consequent cultivation of primary human adult articular chondrocytes with the desired phenotype from the surgical waste obtained during TKA. TKA is a common and very frequently performed orthopaedic surgery during which both femoral condyles are removed. The latter present the ideal source for a simple and relatively cheap isolation of chondrocytes as was confirmed in our study.
Keywords: aggrecan, collagen 2, gene expression, human articular chondrocytes, isolation protocol, phenotype preservation, TKA, total knee arthroplasty
Published: 02.08.2017; Views: 481; Downloads: 173
.pdf Full text (42,50 MB)
This document has many files! More...

Search done in 0.17 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica