| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Parkinson’s disease non-motor subtypes classification in a group of Slovenian patients : actuarial vs. data-driven approach
Timotej Petrijan, Jan Zmazek, Marija Menih, 2023, original scientific article

Abstract: Background and purpose: The aim of this study was to examine the risk factors, prodromal symptoms, non-motor symptoms (NMS), and motor symptoms (MS) in different Parkinson’s disease (PD) non-motor subtypes, classified using newly established criteria and a data-driven approach. Methods: A total of 168 patients with idiopathic PD underwent comprehensive NMS and MS examinations. NMS were assessed by the Non-Motor Symptom Scale (NMSS), Montreal Cognitive Assessment (MoCA), Hamilton Depression Scale (HAM-D), Hamilton Anxiety Rating Scale (HAM-A), REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ), Epworth Sleepiness Scale (ESS), Starkstein Apathy Scale (SAS) and Fatigue Severity Scale (FSS). Motor subtypes were classified based on Stebbins’ method. Patients were classified into groups of three NMS subtypes (cortical, limbic, and brainstem) based on the newly designed inclusion criteria. Further, data-driven clustering was performed as an alternative, statistical learning-based classification approach. The two classification approaches were compared for consistency. Results: We identified 38 (22.6%) patients with the cortical subtype, 48 (28.6%) with the limbic, and 82 (48.8%) patients with the brainstem NMS PD subtype. Using a data-driven approach, we identified five different clusters. Three corresponded to the cortical, limbic, and brainstem subtypes, while the two additional clusters may have represented patients with early and advanced PD. Pearson chi-square test of independence revealed that a priori classification and cluster membership were significantly related to one another with a large effect size (χ2(8) = 175.001, p < 0.001, Cramer’s V = 0.722). The demographic and clinical profiles differed between NMS subtypes and clusters. Conclusion: Using the actuarial and clustering approach, marked differences between individual NMS subtypes were found. The newly established criteria have potential as a simplified tool for future clinical research of NMS subtypes of Parkinson’s disease.
Keywords: Parkinson’s disease, non-motor symptoms subtypes, a priori classification, cluster analysis
Published in DKUM: 07.04.2025; Views: 0; Downloads: 9
.pdf Full text (1,37 MB)
This document has many files! More...

2.
Napovedni dejavniki razvoja nemotoričnih fenotipov parkinsonove bolezni
Timotej Petrijan, 2024, doctoral dissertation

Abstract: Cilj te raziskave je bil preučiti dejavnike tveganja, prodromalne simptome, nemotorične simptome (NMS) in motorične simptome (MS) kot napovedne dejavnike za različne nemotorične fenotipe Parkinsonove bolezni (PB). Skupno 168 bolnikov je opravilo celovite preglede NMS in MS. Bolniki so bili na podlagi novo zasnovanih vključitvenih kriterijev razvrščeni v skupine treh NMS fenotipov (kortikalni, limbični in možgansko-debelni). Identificirali smo 38 (22,6%) bolnikov s kortikalnim fenotipom, 48 (28,6%) z limbičnim in 82 (48,8%) bolnikov z možgansko-debelnim fenotipom. Nadalje je bilo izvedeno podatkovno vodeno združevanje kot alternativni pristop klasifikacije, ki temelji na metodah strojnega učenja. Primerjali smo oba klasifikacijska pristopa za doslednost. Pearsonov hi-kvadrat test neodvisnosti je pokazal, da sta bila oba pristopa povezana z veliko velikostjo učinka (ꭓ2(8) = 175.001, p < 0.001, Cramerjev V = 0.722). Demografski in klinični profili so se pomembno razlikovali med NMS fenotipi in nam lahko predstavljajo diagnostične napovedne dejavnike za razvoj posameznega fenotipa. Novo zasnovani kriteriji imajo potencial kot poenostavljeno orodje za prihodnje klinične raziskave NMS fenotipov PB.
Keywords: Parkinsonova bolezen, nemotorični fenotipi, a priori klasifikacija, analiza grozdov, napovedni dejavniki
Published in DKUM: 22.11.2024; Views: 0; Downloads: 36
.pdf Full text (6,11 MB)

Search done in 0.02 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica