| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 16
First pagePrevious page12Next pageLast page
1.
Functional coatings with ethyl cellulose-calcium carbonate alkaline nanoparticles for deacidification and mechanical reinforcement of paper artifacts
Matej Bračič, Jasna Malešič, Mihael Brunčko, Doris Bračič, Alenka Ojstršek, Tea Kapun, Sašo Gyergyek, Karin Stana-Kleinschek, Tamilselvan Mohan, 2025, original scientific article

Abstract: Paper artifacts susceptible to acid hydrolysis and mechanical stress require effective conservation methods to ensure their longevity. In this study, a novel approach for the deacidification of acidic paper using calcium carbonate (CaCO3) [1,2]-ethylcellulose nanoparticles (CaCO3-EC NPs) dispersed in a non-aqueous ethyl acetate solution is presented. The dispersions were carefully prepared and applied to model acidic paper samples using a dipcoating method and then analyzed for their effectiveness. Transmission electron microscopy showed the formation of agglomerates containing quadrangular alkaline nanoparticles with diameters of 40 to 100 nm and a total agglomerate size of 250 nm. Hydrodynamic analyzes indicate the presence of a swollen ethyl cellulose coating on these agglomerates, which facilitates their dispersion. The results show the effectiveness of the CaCO3-EC NPs system in neutralizing acidic components (change of paper pH from 4.3 to 7) due to the homogeneous distribution within the paper substrates, effectively arresting the degradation processes. Acid-base titration showed a linear correlation between the concentration of alkaline nanoparticles and the alkaline reserve, emphasizing the role of ethylcellulose in facilitating particle transport within the paper matrix. In addition, ethylcellulose was found to improve the mechanical properties of the treated paper, as demonstrated by the standard mechanical tests. Importantly, the optical properties remained unchanged after treatment, as no adverse changes in color were observed. These results underline the effectiveness of the developed deacidification dispersions for the treatment of acidic paper and potentially other cellulose-based cultural heritage documents prone to acidic degradation. This approach offers promising implications for preserving and restoring valuable historical materials.
Keywords: ethylcellulose, calcium carbonate, functional coating, deacidification, strengthening, cultural heritage
Published in DKUM: 20.03.2025; Views: 0; Downloads: 1
.htm Full text (184,18 KB)

2.
Functionalization of polycaprolactone 3D scaffolds with hyaluronic acid glycine-peptide conjugates and endothelial cell adhesion
Tamilselvan Mohan, Fazilet Gürer, Doris Bračič, Florian Lackner, Chandran Nagaraj, Uroš Maver, Lidija Gradišnik, Matjaž Finšgar, Rupert Kargl, Karin Stana-Kleinschek, 2025, original scientific article

Abstract: This study enhances the bioactivity of polycaprolactone (PCL) scaffolds for tissue engineering by functionalizing them with oxidized hyaluronic acid glycine-peptide conjugates to improve endothelial cell adhesion and growth. Hyaluronic acid was conjugated with a glycine-peptide to create a bioactive interface on PCL (static water contact angle, SCA(H2O): 98°). The scaffolds were fabricated using a melt extrusion 3D printing technique. The HA-glycine peptide conjugates were oxidized and immobilized on aminolyzed PCL via Schiff-base chemistry, introducing hydrophilicity (SCA(H2O): 21°), multiple functional groups, and a negative zeta potential (-12.04 mV at pH 7.4). A quartz crystal microbalance confirmed chemical conjugation and quantified the mass (8.5-10.3 mg m-2) of oxidized HA-glycine on PCL. The functionalized scaffolds showed enhanced swelling, improved mechanical properties (2-fold increase in strength, from 26 to 51 MPa), and maintained integrity during degradation. In-vitro experiments demonstrated improved endothelial cell adhesion, proliferation and viability, suggesting the potential for vascularized tissue constructs.
Keywords: 3D printing, polycaprolactone, hyaluronic acid
Published in DKUM: 19.03.2025; Views: 0; Downloads: 3
.pdf Full text (9,50 MB)
This document has many files! More...

3.
Films based on TEMPO-oxidized chitosan nanoparticles: Obtaining and potential application as wound dressings
Matea Korica, Katarina Mihajlovski, Tamilselvan Mohan, Mirjana M. Kostić, 2024, original scientific article

Abstract: A series of novel films based on TEMPO-oxidized chitosan nanoparticles were prepared by casting method. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the chemical structure of TEMPOoxidized chitosan. The surface morphology of the TEMPO-oxidized chitosan nanoparticles was analyzed by atomic force microscopy (AFM). The physicochemical (area density, thickness, iodine sorption, roughness), functional (moisture sorption, liquid absorption capacity, weight loss upon contact with the liquid, and water vapor transmission rate), antibacterial, and antioxidant properties of films based on TEMPO-oxidized chitosan nanoparticles were also investigated. The physicochemical properties of the films varied widely: area density ranged from 77.83 ± 0.06 to184.46 ± 0.05 mg/cm2 , thickness varied between 80.5 ± 1.6 and 200.5 ± 1.6 μm, iodine sorption spanned from 333.7 ± 2.1 to166.4 ± 2.2 mg I2/g, and roughness ranged from 4.1 ± 0.2 to 5.6 ± 0.3 nm. Similarly, the functional properties also varied significantly: moisture sorption ranged from 4.76 ± 0.03 to 9.62 ± 0.11 %, liquid absorption capacity was between 129.04 ± 0.24 and 159.33 ± 0.73 % after 24 h, weight loss upon contact with the liquid varied between 31.06 ± 0.35 and 45.88 ± 0.58 % after 24 h and water vapor transmission rate ranged from 1220.10 ± 2.91to1407.77 ± 5.22 g/m2 day. Despite the wide variations in physicochemical and functional properties, all films showed maximum bacterial reduction of Staphylococcus aureus and Escherichia coli, although they exhibited low antioxidant activity. The results suggest that the films could be effectively utilized as antibacterial wound dressings.
Keywords: TEMPO-oxidized chitosan nanoparticles, films, antibacterial activity, wound dressings
Published in DKUM: 11.09.2024; Views: 56; Downloads: 66
.pdf Full text (4,92 MB)
This document has many files! More...

4.
Antithrombogenic polysaccharide coatings to improve hemocompatibility, protein-repellence, and endothelial cell response
Matej Bračič, Bence M. Nagy, Olivija Plohl, Florian Lackner, Tobias Alexander Steindorfer, Roland Fischer, Thomas Heinze, Andrea Olschewski, Karin Stana-Kleinschek, Chandran Nagaraj, Tamilselvan Mohan, 2024, original scientific article

Abstract: Polyester biomaterials play a crucial in vascular surgery, but suffer from unspecific protein adsorption, thrombogenicity, and inadequate endothelial cell response, which limit their success. To address these issues, we investigated the functionalization of polyester biomaterials with antithrombogenic polysaccharide coatings. A two-step and water-based method was used to coat cationized polycaprolactone with different sulfated polysaccharides (SPS), which resulted in long-term stability, tunable morphology, roughness, film thickness, chemical compositions, zeta potential, and water content. The coatings significantly increased the anticoagulant activity and reduced the thrombogenicity of polycaprolactone, particularly with highly sulfated heparin and cellulose sulfate. Less SPS, such as chondroitin sulfate, fucoidan, and carrageenan, despite showing reduced anticoagulant activity, also exhibited lower fibrinogen adsorption. The adhesion and viability of human primary endothelial cells cultured on modified polycaprolactone correlated with the type and sulfate content of the coatings.
Keywords: polyester biomaterials, vascular surgery, antithrombogenic polysaccharide coatings
Published in DKUM: 10.09.2024; Views: 65; Downloads: 15
.pdf Full text (5,07 MB)
This document has many files! More...

5.
6.
Bioactive functional nanolayers of chitosan-lysine surfactant with single- and mixed-protein-repellent and antibiofilm properties for medical implants
Urban Ajdnik, Lidija Fras Zemljič, Olivija Plohl, Lourdes Pérez, Janja Trček, Matej Bračič, Tamilselvan Mohan, 2021, original scientific article

Abstract: Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption arethe prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer apromising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to researchand develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties incontact with the complex biological environment are crucial. In this study, we developed an aqueous stable and crosslinker-freepolyelectrolyte−surfactant complex (PESC) composed of a renewable cationic polysaccharide, chitosan, a lysine-based anionicsurfactant (77KS), and an amphoteric antibiotic, amoxicillin, which is widely used to treat a number of infections caused by bacteria.We successfully introduced the PESC as bioactive functional nanolayers on the“model”and“real”polydimethylsiloxane (PDMS)surfaces under dynamic and ambient conditions. Besides their high stability and improved wettability, these uniformly depositednanolayers (thickness: 44−61 nm) with mixed charges exhibited strong repulsion toward three model blood proteins (serumalbumin,fibrinogen, andγ-globulin) and their competitive interactions in the mixture in real-time, as demonstrated using a quartzcrystal microbalance with dissipation (QCM-D). The functional nanolayers with a maximum negative zeta potential (ζ:−19 to−30mV at pH 7.4), water content (1628−1810 ng cm−2), and hydration (low viscosity and elastic shear modulus) correlated with themass, conformation, and interaction nature of proteins. In vitro antimicrobial activity testing under dynamic conditions showed thatthe charged nanolayers actively inhibited the growth of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcusaureus) bacteria compared to unmodified PDMS. Given the ease of fabrication of multifunctional and charged biobased coatingswith simultaneous protein-repellent and antimicrobial activities, the limitations of individual approaches could be overcome leadingto a better and advanced design of various medical devices (e.g., catheters, prosthetics, and stents).
Keywords: silicone implants, protein-repellent, antimicrobial, chitosan, lysine, bioactive coatings, adsorption, QCM-D
Published in DKUM: 15.04.2024; Views: 266; Downloads: 17
.pdf Full text (4,24 MB)
This document has many files! More...

7.
8.
Functional 3D printed polysaccharide derivative scaffolds for vascular graft application : doctoral disertation
Fazilet Gürer, 2023, doctoral dissertation

Abstract: Tissue engineering (TE) is an interdisciplinary field that aims towards replacement, healing or reconstruction of damaged tissue and organs. Incurable diseases are currently treated with organ transplantation, that have the disadvantages of insufficient donors, immune response, and organ rejection after transplantation. TE imitate the functions of extracellular matrix (ECM) to develop biocompatible/biodegradable scaffolds with appropriate features which are utilized to provide mechanical support, cellular infiltration, migration, and tissue formation, and to mimic the biochemical and biophysical cues of cells. Several fabrication methods have been introduced to mimic the 3D structure of ECM and 3D printing is one of the additive manufacturing techniques, widely used in TE because of its feasibility to build complex tissue constructs and control over fabrication and cell distribution. The polysaccharide-peptide conjugate has gained enormous interest in recent years owing to its biocompatibility, degradability, flexibility, and structural matching to natural proteoglycans. In this context, we reported here on investigation of biocompatibility with HUVECs, surface modification of 3D printed PCL scaffolds with an amine group and chemically crosslinked oxidized HA-amino acid/peptide conjugates (OHACs) was used to develop a novel biomaterial for use as a tissue engineered vascular graft. Modified polysaccharides were characterized with respect to their chemical structure, charge, UV and fluorescence properties and cytotoxicity. The successful conjugation was demonstrated by XPS, and a decrease in the free amine peaks on the surface was observed after conjugation. In addition, the water contact angle measurements showed improved wetting, an indication that the conjugation to the PCL-A surface was successful. Finally, the biocompatibility of the novel scaffolds was characterized by the MTS and the live- dead assay. In both assays, proliferation of cells was observed after 7 days and cell spreading on the surface was detected by phalloidin staining of actin filaments. In conclusion, it was possible to prepare surface-active scaffolds by combining the advantages of biocompatibility and mechanical strength of polysaccharides and polyesters, respectively.
Keywords: 3D tiskanje, karboksimetilceluloza, hialuronska kislina, polikaprolakton, kemija karbodiimida, kemija Shiffove baze, endotelizacija 3D printing, carboxymethyl cellulose, hyaluronic acid, polycaprolactone, carbodiimide chemistry, shiff-base chemistry, endothelialization
Published in DKUM: 06.10.2023; Views: 522; Downloads: 56
.pdf Full text (7,97 MB)

9.
10.
Okoljsko prijazna in napredna funkcionalizacija silikona za razvoj novih medicinskih pripomočkov : magistrsko delo
Katja Kuzmič, 2021, master's thesis

Abstract: Prekomerna uporaba antibiotikov za zdravljenje infekcij vodi v naraščanje števila odpornih bakterij, kar predstavlja grožnjo javnemu zdravju. Strategije zmanjševanja uporabe temeljijo tudi na preprečevanju nastanka bakterijskega biofilma na površinah medicinskih pripomočkov. Predstavljamo metodo funkcionalizacije silikona z oplaščenjem z naravnimi bioaktivnimi substancami. Na silikon smo kot vezni polimer adsorbirali biopolimer polidopamin, na katerega smo kovalentno vezali karbokismetil hitozan s tiolnimi funkcionalnimi skupinami, ki izkazuje protimikrobne in biofilm-inhibitorne lastnosti. Rezultati karakterizacije so pokazali uspešno kovalentno vezavo karboksimetil hitozana preko tiolnih skupin na polidopamin, kar je pripomoglo k zmanjšanju tvorbe biofilma na površini v primerjavi s fizikalno vezanim karboksimetil hitozanom in neobdelanim silikonom.
Keywords: biopolimeri, biofunkcionalizacija, protimikrobnost, polidopamin, karboksimetil hitozan
Published in DKUM: 20.09.2021; Views: 1074; Downloads: 87
.pdf Full text (2,89 MB)

Search done in 0.2 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica