| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Impacts of different factors on seepage and land uplift due to compressed-air injection
Zang Yongge, Sun Dongmei, Feng Ping, Stephan Semprich, 2017, original scientific article

Abstract: In this study, using an in-situ, air-flow test in Essen, the impacts of different factors on multiphase flow and land uplift during and after compressed-air injection were investigated using numerical simulations. A loosely coupled, two-phase flow and geo-mechanical modeling approach, linking two numerical codes (TOUGH2/EOS3 and FLAC3D) was employed to simulate the in-situ, air-flow test for comparing the simulated and measured results. As the compressed air is injected, it flows upwards and laterally, and the vertical effective stress near and above the injection zones decreases owing to the pore pressure increasing here, causing an expansion of the soil skeleton in the corresponding zones. The land uplift, induced mainly by support actions from lower deformed soils, is relevant to the distribution of the porosity increments in the soil interior, and it increases rapidly during air injection. After the compressed-air injection stops, the land uplift decreases gradually to zero due to the overpressure dissipation. With a combination of intensive rainfall, the land uplift is slightly greater near the borehole, but it is significantly greater at a distance from the borehole than the land uplift with no or low rainfall, but the air-injection rate remains almost unchanged due to the unchangeable pore pressure near the injection region. As the intrinsic permeability increases or the air entry pressure decreases in the injected strata, both the land uplift and the air injection rate increase, but the time required for the land uplift to become zero is slightly advanced with either a small permeability or a high air entry pressure.
Keywords: loosely coupled two-phase flow and geo-mechanical model, in-situ, air-flow test, compressed-air injection, multiphase flow, land uplift, air loss
Published in DKUM: 18.06.2018; Views: 1192; Downloads: 142
.pdf Full text (1,75 MB)
This document has many files! More...

2.
Methods for control of seepage in RCC dams with wathertight and drainage measures
Yueming Zhu, Stephan Semprich, Erich Bauer, Cuiping Yuan, Dongmei Sun, 2006, original scientific article

Abstract: The technologies for construction of roller-compacted concrete (RCC) dams have been considerably developed during recent years in China. At the time being, they have been successfully applied to the constructions of even extreme-high gravity dams and medium to high arch dams. There are a few of hundreds of RCC dams (RCCD) under design and/or construction in China. One of the main concerned technical problems according to the construction is about the understanding of the property of seepage in RCCDs and the relevant theory and methods for the control of the seepage. In order to overcome the problem, the senior author has been engaged in a wide study on the property and methods for control of seepage in RCCDs for more than 10 years. The property of seepage, measures for watertightness and drainage, optimal design and construction schemes for control of seepage in the dams have been essentially understood either in theory and practice. The results have been applied for the construction and the backanalysis of several dams. The paper describes the research findings in detail with respect to the theoretical fundament and their application for a high RCC gravity dam.
Keywords: gravity dam, Roller-compacted concrete, RCC, seepage, anisotropic permeability, drainage
Published in DKUM: 17.05.2018; Views: 1308; Downloads: 56
.pdf Full text (209,12 KB)
This document has many files! More...

Search done in 0.08 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica