| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Search the digital library catalog Help

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 119
First pagePrevious page12345678910Next pageLast page
1.
Optimizacije v inženirstvu : reševanje problemov z metahevrističnimi metodami v okolju MATLAB
Janez Gotlih, Mirko Ficko, 2025, higher education textbook

Abstract: Skripta obravnavajo temeljne pristope optimizacije v inženirstvu s poudarkom na uporabi metahevrističnih metod, kot sta genetski algoritem (GA) in algoritem rojev delcev (PSO). Namenjena so študentom in inženirjem, ki želijo razumeti tako teoretično ozadje kot praktično implementacijo optimizacijskih algoritmov v okolju MATLAB. Vključujejo poglavja o enokriterijskih in večkriterijskih optimizacijskih problemih, obravnavajo omejitve, različne ciljne funkcije ter vizualizacijo rezultatov. Vsako poglavje vsebuje strukturirane vaje in naloge za samostojno delo, ki spodbujajo razumevanje delovanja algoritmov, oblikovanje optimizacijskih modelov in interpretacijo rešitev. Poseben poudarek je na razlagi parametrov algoritmov, primerjavi konvergence ter vplivu nastavitev na vedenje optimizacije. Skripta se zaključijo s pregledom značilnih testnih funkcij in primeri Pareto front za večkriterijsko optimizacijo. Zasnovana so tako, da tudi uporabniki brez poglobljenega matematičnega znanja lahko postopoma razvijejo intuicijo za uporabo optimizacijskih pristopov v realnih inženirskih problemih.
Keywords: metahevristične metode, genetski algoritem (GA), algoritem rojev delcev (PSO), eno- in večkriterijska optimizacija, MATLAB, inženirske aplikacije
Published in DKUM: 11.11.2025; Views: 0; Downloads: 1
.pdf Full text (5,96 MB)
This document has many files! More...

2.
Strojno učenje za inženirje : koncepti, primeri in uporaba v okolju MATLAB
Janez Gotlih, Miran Brezočnik, 2025, other educational material

Abstract: Skripta obravnavajo strojno učenje z vidika uporabe v inženirstvu, pri čemer temeljne koncepte povezujejo s praktičnimi primeri v okolju MATLAB. Predstavljeni so štirje temeljni pristopi strojnega učenja: nadzorovano učenje, nenadzorovano učenje, učenje z okrepitvijo in prenosno učenje. Za vsak pristop so podani temeljni koncepti, konkretni primeri uporabe ter naloge za samostojno delo. Poseben poudarek je na uporabi orodij, kot so Regression Learner, Classification Learner, Deep Network Designer in Reinforcement Learning Designer, s pomočjo katerih študenti razvijajo modele na podatkih, ki izvirajo iz realnih inženirskih primerov. Med njimi so obraba orodja, vibracije strojev, balansiranje sistemov in prepoznavanje predmetov. Skripta vključujejo tudi eksperimentalne podatkovne množice in praktične napotke za učenje, validacijo in izboljšavo modelov. Namenjena so študentom tehniških smeri ter vsem, ki želijo usvojiti uporabo metod strojnega učenja za reševanje konkretnih inženirskih problemov.
Keywords: strojno učenje, nadzorovano učenje, nenadzorovano učenje, učenje z okrepitvijo, prenosno učenje, MATLAB, inženirske aplikacije
Published in DKUM: 10.11.2025; Views: 0; Downloads: 7
.pdf Full text (6,25 MB)
This document has many files! More...

3.
Temporal and statistical insights into multivariate time series forecasting of corn outlet moisture in industrial continuous-flow drying systems
Marko Simonič, Simon Klančnik, 2025, original scientific article

Abstract: Corn drying is a critical post-harvest process to ensure product quality and compliance with moisture standards. Traditional optimization approaches often overlook dynamic interactions between operational parameters and environmental factors in industrial continuous flow drying systems. This study integrates statistical analysis and deep learning to predict outlet moisture content, leveraging a dataset of 3826 observations from an operational dryer. The effects of inlet moisture, target air temperature, and material discharge interval on thermal behavior of the system were evaluated through linear regression and t-test, which provided interpretable insights into process dependencies. Three neural network architectures (LSTM, GRU, and TCN) were benchmarked for multivariate time-series forecasting of outlet corn moisture, with hyperparameters optimized using grid search to ensure fair performance comparison. Results demonstrated GRU’s superior performance in the context of absolute deviations, achieving the lowest mean absolute error (MAE = 0.304%) and competitive mean squared error (MSE = 0.304%), compared to LSTM (MAE = 0.368%, MSE = 0.291%) and TCN (MAE = 0.397%, MSE = 0.315%). While GRU excelled in average prediction accuracy, LSTM’s lower MSE highlighted its robustness against extreme deviations. The hybrid methodology bridges statistical insights for interpretability with deep learning’s dynamic predictive capabilities, offering a scalable framework for real-time process optimization. By combining traditional analytical methods (e.g., regression and t-test) with deep learning-driven forecasting, this work advances intelligent monitoring and control of industrial drying systems, enhancing process stability, ensuring compliance with moisture standards, and indirectly supporting energy efficiency by reducing over drying and enabling more consistent operation.
Keywords: advanced drying technologies, continuous flow drying, time-series forecasting, LSTM, GRU, TCN, deep learning, statistical analysis, optimization of the drying process
Published in DKUM: 03.11.2025; Views: 0; Downloads: 3
.pdf Full text (3,02 MB)
This document has many files! More...

4.
Generating test cases for automotive requirement testingusing rag
Matic Krepek, 2025, master's thesis

Abstract: The automotive industry is increasingly confronted with challenges in managing complex requirements and test cases arising from the integration of advanced electronic systems, software functionalities, and compliance with international standards. Conventional manual validation of requirements is time-consuming, error-prone, and resource-intensive, underscoring the need for more efficient and reliable approaches. This thesis investigates the automation of test case generation through the application of Retrieval-Augmented Generation (RAG) in combination with Large Language Models (LLMs). A complete RAG workflow was implemented in Python, incorporating LangChain, LangGraph, Ollama, and ChromaDB to facilitate indexing, retrieval, and generation. The system was trained and evaluated on datasets comprising automotive requirements and test cases, with experiments examining embedding quality, retrieval strategies, prompt engineering techniques, and generative model parameters. The results demonstrate that RAG is capable of generating high-quality, contextually relevant test cases on consumer-grade hardware, thereby significantly enhancing efficiency, consistency, and productivity relative to manual methods. Furthermore, the findings suggest that RAG-based systems are best positioned as complementary tools that support, rather than replace, human engineers. This research provides a foundation for future work on hybrid retrieval methods, advanced embedding techniques, and the integration of more powerful LLMs into requirement and test case management processes.
Keywords: Automotive requirements validation, Test case generation, Large Language Models, Retrieval-Augmented Generation
Published in DKUM: 01.10.2025; Views: 0; Downloads: 0
.pdf Full text (5,84 MB)

5.
Optično sortiranje plastičnega granulata
Patrik Kožar, Marko Simonič, 2025, undergraduate thesis

Abstract: Diplomsko delo obravnava razvoj in izvedbo optičnega sortirnega sistema za razvrščanje granulata po barvi in velikosti. Glavni cilj je bil izdelati preprost, a učinkovit prototip, ki z uporabo strojnega vida zazna posamezne delce na tekočem traku in jih s pomočjo pnevmatskih ventilov usmeri v ustrezne zbiralnike. Sistem temelji na Beckhoffovem krmilniku in TwinCAT Vision okolju, kjer smo implementirali algoritem za zajem slike, določanje lege delcev in časovno usklajeno proženje ventilov. Preizkusi so pokazali, da je sistem pravilno razvrstil približno 73 % vseh granul, kar potrjuje delovanje prototipa in daje dobro osnovo za nadaljnji razvoj.
Keywords: sortirnik, optični, granulat, strojni vid, Beckhoff
Published in DKUM: 22.09.2025; Views: 0; Downloads: 5
.pdf Full text (2,16 MB)

6.
Optični sortirnik matic in podložk : diplomsko delo
Maj Černe, 2025, undergraduate thesis

Abstract: Diplomsko delo se navezuje na implementacijo algoritma na industrijskem računalniku proizvajalca Beckhoff za zaznavanje, ločevanje in merjenje matic in podložk z uporabo strojnega vida, ki ga omogoča Beckhoffova programska oprema. Razvil sem algoritem, ki je lahko ločeval matico od podložke ter jih izmeril na podlagi njihove površine.
Keywords: strojni vid, Beckhoff, sortiranje, proizvodnja
Published in DKUM: 22.09.2025; Views: 0; Downloads: 4
.pdf Full text (2,78 MB)

7.
Klasifikacija krompirja s pomočjo globokih nevronskih mrež s podporo barvne in termovizijske analize
Taja Pec, 2025, master's thesis

Abstract: V magistrskem delu obravnavamo klasifikacijo krompirja v tri kakovostne razrede – gnili, krmni in jedilni – z uporabo naprednih globokih nevronskih mrež. Model smo razvili v programskem jeziku Python z uporabo ogrodja TensorFlow. Primerjali smo učinkovitost treh sodobnih arhitektur konvolucijskih nevronskih mrež: EfficientNet, DenseNet in Xception, ter na podlagi rezultatov izbrali najbolj primerno za našo podatkovno bazo. DenseNet201 je izstopal kot najbolj natančen in stabilen model, DenseNet121 pa je ponujal najboljše ravnovesje med natančnostjo in računsko zahtevnostjo. Preizkusili smo tudi termovizijsko kamero za preučevanje možnosti zaznave gnilobe na podlagi temperaturnih razlik krompirja in opisali omejitve te metode. Cilj raziskave je razvoj inteligentnega, cenovno dostopnega sistema za avtomatsko sortiranje krompirja, ki bi povečal produktivnost kmetijske proizvodnje ob minimalnih stroških.
Keywords: globoko učenje, konvolucijske nevronske mreže, klasifikacija krompirja, TensorFlow, termovizijska analiza
Published in DKUM: 22.09.2025; Views: 0; Downloads: 11
.pdf Full text (8,18 MB)

8.
Hardened workpiece shape prediction using acoustic responses and deep neural network
Jernej Hernavs, Tadej Peršak, Miran Brezočnik, Simon Klančnik, 2025, original scientific article

Abstract: This study proposes a novel approach to predict the shape of hardened metal workpieces using acoustic responses processed by a deep convolutional neural network (CNN), aiming to advance automated straightening in manufacturing. Tool steel 1.2379 workpieces of varying widths (24 mm, 90 mm, 200 mm) were struck using a custom-built device, with acoustic responses captured and transformed into scalograms via Continuous Wavelet Transform (CWT). A 40-layer CNN predicted 5×9 shape matrices, validated by 3D scans. The dataset (219 shape states, 3396 recordings) was evaluated using leaveone-workpiece-out cross-validation, comparing the CNN against baseline models (linear regression, random forest, shallow CNN, XGBoost). CNN achieved competitive accuracy, demonstrating the feasibility of acoustic-based shape prediction. As a non-invasive, cost-efective complement to 3D scanning, this method ofers innovative potential for multi-modal quality control systems in manufacturing.
Keywords: metal workpiece, hardened, deep neural network, acoustic respons, shape prediction
Published in DKUM: 14.08.2025; Views: 0; Downloads: 9
.pdf Full text (1,10 MB)
This document has many files! More...

9.
Načrtovanje sistema strojnega vida za preverjanje oblike navitja statorja elektromotorjev : diplomsko delo
Rok Merlak, 2025, undergraduate thesis

Abstract: V diplomskem delu je opisano načrtovanje in realizacija prototipne naprave za meritve oblike lasničnega navitja elektromotorja v podjetju MAHLE Electric Drives Slovenija. Navitje v obliki sponke za lase oz. lasnično navitje je žica z pravokotnim prerezomn, ukrivljena v 3D geometrijo. Obliko geometrije je potrebno nadzorovati z sistemom strojnega vida. Potrebno se je bilo odločiti o tehnologiji, konstruirati mehaniko gibanja, razviti algoritem za zajem in obdelavo višinskih slik ter analizirati rezultate pridobljenih meritev.
Keywords: 3D skeniranje, strojni vid, elektromotor, lasnično navitje, stator, lasnica, oblak točk
Published in DKUM: 08.07.2025; Views: 0; Downloads: 0

10.
Uporaba servo motorja za simulacijo delovnega okolja : diplomsko delo
Žan Cmok, 2025, undergraduate thesis

Abstract: V diplomskem delu smo na kratko predstavili uporabo simulacij v delovnih okoljih in opisali pojem haptika. Opisali smo potek zasnove sistema in utemeljili izbor servo motorja ter ostalih komponent. Razčlenili smo izdelavo sistema na strojni del, elektro in programski del. Izdelan sistem smo testirali in popravili napake. Z lastno uporabo sistema smo preizkusili simuliranje delovnih okolij, uporabnost sistema pa so na koncu potrdili še testerji.
Keywords: simulacija, haptika, servo motor, delovno okolje
Published in DKUM: 03.06.2025; Views: 0; Downloads: 43
.pdf Full text (3,48 MB)

Search done in 0.13 sec.
Back to top
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica